This question concerns a simple model for the formation of rings around a planet. The system we consider is a central planet of mass M around which a cloud of small particles of identical mass $m << M$ revolve. There is no particular symmetry in the cloud initially; however, the total angular momentum of the cloud around the planet is non-zero. Assume that the particles do not interact with each other except for collisions that obey the following simplified collision rule:

$$v_i' - v_j' = -e_r (v_i - v_j),$$

where e_r (the coefficient of restitution) obeys $0 < e_r < 1$, v_i is the velocity of the i-th particle, and primes denote the velocities after collision. The collisions are instantaneous and do not change the masses of the colliding particles.

(a) Consider two colliding particles with velocities before collision v_1 and v_2. Write down the loss of kinetic energy ΔK in terms of m, e_r and the velocities before the collision.

(b) Suppose that the particles in (a) have angular momentum L_1 and L_2 around the central planet. Demonstrate that upon collision, $|L_1 - L_2|$ diminishes.

(c) The Laplace-Runge-Lenz vector of a particle is defined by

$$\varepsilon = \frac{\mathbf{v} \times \mathbf{L}}{Gm(M+m)} - \frac{\mathbf{r}}{r},$$

where \mathbf{L} is the particle angular momentum, \mathbf{v} the particle velocity, \mathbf{r} the particle position whose origin is at the central planet and G the gravitational constant. Demonstrate that upon collision the magnitude of the difference between the Laplace-Runge-Lenz vectors of the colliding particles diminishes.

(d) Given that \mathbf{L} and ε uniquely determine the Kepler orbit of the particle, and that the Laplace-Runge-Lenz vector is invariant when there are no collisions, use your results from (b) and (c) to argue that eventually stable rings are formed around the planet.