Consider the reaction, \(n + p \rightarrow d + \pi^0 \), in which a neutron interacts with a target proton to produce a deuteron and a \(\pi^0 \). Assume that the target proton is at rest in the lab frame. For this problem use: \(m_n = m_p = M \), \(m_d = 2M \), and \(m_{\pi} = m \).

(a) The neutron threshold momentum is the minimum neutron momentum needed for the reaction to occur. Derive an expression for the neutron threshold momentum, \(p_n \), in terms of \(M \) and \(m \).

(b) Derive expressions for the momentum of the \(\pi^0 \), and of the \(d \), at threshold. Leave your expression in terms of \(p_n \), the neutron threshold momentum that you found in part a).

(c) Assume that the \(\pi^0 \) created at threshold now decays immediately after its production into two \(\gamma \) rays, \(\pi^0 \rightarrow \gamma + \gamma \) (see diagram below). By considering conservation of momentum, derive an expression for the minimum possible angle \(\theta \) between the \(\gamma \)-rays in the lab frame, in terms of \(p_\pi \) and \(E_\pi \).