A two dimensional gas of electrons is confined at \(z = 0 \) in the \(x-y \) plane at the interface between two semi-infinite dielectric slabs, as shown above. Each slab has dielectric constant \(\epsilon \). A perturbation of the electron charge-density propagates through the electron gas. The total two dimensional charge density is given by \(\sigma(x, t) = \sigma_0 + \delta \sigma(x, t) \), where the perturbation \(\delta \sigma \) takes the form of a wave

\[
\delta \sigma(x, t) = a \exp\{i(kx - \omega t)\}.
\]

You may work in either SI or CGS units and assume that:

- Electrons act as classical particles of mass \(m \) with local velocity,

\[
v(x, t) = v_0 \exp\{i(kx - \omega t)\}.
\]

- Magnetic fields are negligible.
- The perturbation is small, \(i.e. \delta \sigma \ll \sigma_0 \).

Now do the following:

a) Use Laplace’s equation to find the electrical potential \(\phi(x, z, t) \) due to the periodic charge perturbation.

b) From \(\phi(x, z, t) \) find the electric field component \(E_x(x, z = 0, t) \) parallel to and within the electron gas.

c) Use the linearized charge continuity equation to find a relation between \(a \) and \(v_0 \).

d) Show that the relation between \(\omega \) and \(k \) for the wave is given by,

\[
\omega^2 = \gamma |k|,
\]

where you should express the coefficient \(\gamma \) in terms of \(m, \epsilon, \sigma_0 \) and the electron charge \(q = -e \).