A charge \(Q \) moves on the \(x \) axis at constant relativistic velocity \(-v\hat{x}\). At the moment that the charge \(Q \) is at the origin, the fields at the point \((x, y, z) = (0, d, 0)\) are

\[
\mathbf{E} = \frac{Q}{4\pi\epsilon_0} \frac{\gamma}{d^2} \hat{y}, \\
\mathbf{B} = -\frac{Q}{4\pi\epsilon_0} \frac{v}{c^2} \frac{\gamma}{d^2} \hat{z},
\]

where

\[
\gamma = \frac{1}{\sqrt{1-v^2/c^2}}.
\]

A test charge \(q \) is moving parallel to the \(x \) axis on the line \(y = d, z = 0 \) at the same constant relativistic speed — but in the \textit{opposite} direction. It reaches the point \((0, d, 0)\) at the same time that charge \(Q \) is at the origin.

a) Find the force on \(q \) due to \(Q \) at the moment that \(Q \) is at the origin and \(q \) is at \((0, d, 0)\).

b) In the present frame of reference, the fields produced by \(Q \) obey the condition \(\mathbf{E} \cdot \mathbf{B} = 0 \). Will this condition remain true in all inertial frames?

For the remaining problems consider the frame in which the charge \(q \) is at rest.

c) Find the speed of the charge \(Q \) in the frame in which \(q \) is at rest.

d) Find the \(\mathbf{E} \) and \(\mathbf{B} \) fields at the position of test charge \(q \) due to charge \(Q \), at the moment that they have the same \(x \) co-ordinate in the frame in which \(q \) is at rest. You may either Lorentz transform the given fields, or use your result from part (c).

e) Find the force on \(q \) due to \(Q \), at the moment they have the same \(x \) co-ordinate in the frame in which \(q \) is at rest.

f) Should the forces in parts (a) and (e) be equal? If so, why? If not, why not?