A conducting rod of mass \(M \) is free to slide without friction on two long parallel conducting rails separated by a distance \(D \). The rails are connected through a switch to a battery of emf \(E \) and a coil of inductance \(L \). The rod completes the circuit. There is negligible electrical resistance. A uniform magnetic field \(B \) is normal to the plane of the paper, as shown.

(a) Assuming the switch to be closed, show that the speed \(v \) of the rod as a function of time \(t \) satisfies a differential equation of the form

\[
d^2v/dt^2 + av + b = 0
\]

Find expressions for \(a \) and \(b \) in terms of the quantities \(E, D, L, B, M \), and fundamental constants.

(b) Now suppose the switch, which is initially open, is closed at \(t = 0 \) and that \(I(0) = v(0) = 0 \). Sketch the potential drop across both the inductor and the rod as a function of time. Be sure to include both a voltage and time scale.

(c) Find \(I(t) \) for \(t > 0 \).