An insulating sphere of radius R contains a fixed spherically symmetric distribution of electric charge with density $\rho(r)$. The dependence of $\rho(r)$ on radius r is not specified.

The sphere rotates rigidly with angular frequency vector $\mathbf{\Omega} = \Omega \hat{z}$, $\Omega > 0$.

(a) Give an expression for the electrostatic potential $\phi(r)$ at any point \mathbf{r} in terms of an integral involving $\rho(r)$. The potential is zero at infinity.

(b) Give an expression for the current density vector $\mathbf{j}(\mathbf{r})$ in terms of the quantities given, at any point inside the sphere.

(c) Give an expression for the magnetic field vector $\mathbf{B}(\mathbf{r})$ at any point \mathbf{r} in space in terms of an integral over the current density found in part (b).

(d) Find a simple expression for the ratio $\frac{\mathbf{B}(0)}{\phi(0)}$ in terms only of Ω and fundamental constants.

(e) Give the direction of $\mathbf{B}(0)$ if the charge density is positive everywhere.

HINT: You may find it convenient to use the vector relation

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$