A plane electromagnetic wave of frequency ω is normally incident on a thick metal plate of unit area with conductivity σ. The incident electric field has amplitude E and wavenumber k and the reflected electric field has amplitude rE. The transmitted electric field has amplitude E_m and wavenumber k_m.

$$E e^{i(kz-\omega t)} \xrightarrow{\text{Vacuum}} E_m e^{i(k_m z-\omega t)} \xrightarrow{\text{Metal}} rE e^{i(-kz-\omega t)}$$

(a) The momentum density of a plane wave is $1/c$ times the energy density, where c is the speed of light in vacuum. Find the time averaged force on the plate in terms of E and r.

(b) Find E_m/B_m where B_m is the magnetic field amplitude in the metal. Assume that the conductivity is large enough that the displacement current can be ignored. Assume that the metal is nonmagnetic so that $\mu = 1$ (Gaussian units) or $\mu = \mu_0$ (MKS units).

(c) Find r by considering the boundary conditions at the plate and the result of part (b).