A molecule consists of three equal atoms which form an equilateral triangle of side \(L \) as shown. The eigenstates of an electron in this molecule can be considered as linear combinations of orthonormal basis states, \(\phi_i \), centered on each atom \(i = 1,2,3 \). In this basis the Hamiltonian has diagonal matrix elements \(\langle \phi_i | H | \phi_i \rangle = \varepsilon \), and off-diagonal matrix elements between neighboring basis states \(i \) and \(j \), \(\langle \phi_i | H | \phi_j \rangle = -t \), where the energy \(t > 0 \).

(a) Define the operator \(R \) which operates on the basis functions as follows:
\[
R \phi_i = \phi_{i+1}, \quad i = 1,2; \quad R \phi_3 = \phi_1.
\]
Note that \(R \) has the effect of rotating the basis functions around the triangle and that \(R^3 = 1 \). Show that \(R \) commutes with the Hamiltonian.

(b) The eigenstates \(\psi_n \) of \(R \) with eigenvalues \(\lambda_n \) can be expressed as
\[
\psi_n = \sum_{i=1}^{3} a_{ni} \phi_i.
\]
Find the expansion coefficients \(a_{ni} \) and the eigenvalues \(\lambda_n \).

(Hint: note that \(\lambda_n = 1 \).)

(c) Give the energy eigenvalues in terms of \(\varepsilon \) and \(t \) and give their degeneracies.

(d) Now suppose an electric field of strength \(F \) is switched on in the +x-direction. The only effect is to change the diagonal matrix elements of the Hamiltonian at each site by an amount \(eFx_i \), where \(x_i \) is the x position of the center of atom \(i \), and \(-e \) is the charge of the electron. Find the new energy eigenvalues to linear order in \(F \).