The deuteron is a weakly bound state of a neutron and a proton. The nuclear interaction between the proton and neutron can be approximated by a three-dimensional square well potential in the center-of-mass frame:

\[V(r) = \begin{cases}
-V_N & r < r_N = 10^{-13}\text{cm} \\
0 & r > r_N
\end{cases} \]

where \(r \) is the separation between the proton and the neutron at positions \(\vec{r}_p \) and \(\vec{r}_n \) respectively. In the center-of-mass frame the two-body problem reduces to that of a single particle with reduced mass \(\mu \) moving in the potential well \(V(r) \).

(a) Derive the reduced mass \(\mu \) in terms of the neutron and proton masses, \(m_n \) and \(m_p \) and find the radial Schrödinger equation for this system.

(b) Assuming a bound state exists, what is the angular momentum of the ground state? Find the ground state wave function in the center-of-mass frame.

(c) Whether or not the neutron and the proton form a bound state depends on \(V_N \) and \(r_N \). Determine \(V_{\text{min}} \), the minimum value of \(V_N \) for a bound state to exist, in terms of \(r_N \) and \(\mu \). Calculate \(V_{\text{min}} \) in MeV using \(m_p = 938 \text{ MeV}/c^2 \) and \(m_n = 940 \text{ MeV}/c^2 \). (Note: \(\hbar c = 1.9732710^{-11}\text{MeV cm} \))

(d) Suppose that \(V_N \) is changed by a fraction \(\delta \): \(V_N = V_{\text{min}} (1 + \delta) \). Determine the ground state energy to leading order in \(\delta \) when \(0 < \delta \ll 1 \).