A system offers noninteracting spinless bosons energy levels \(E_n = n \varepsilon \) for orbital wavefunctions \(\phi_n(r) \), \(n = 0,1,2,\ldots \).

(a) Two identical spinless bosons are introduced into the system. Write down explicit two-particle wavefunctions \(\Psi(r_1,r_2) \) and the corresponding energies for the two lowest lying two-particle states. Pay particular attention to symmetry and the indistinguishability of the particles.

(b) Now particles are added until the system contains 100 identical bosons. How many independent 100-particle states are there with energy \(4\varepsilon \)? Identify the orbitals \(\phi_n \) contained in these different states, but you are not asked to write the explicit wavefunctions.

(c) The system is placed in contact with a reservoir at temperature \(T \) and a source of bosons that maintains a chemical potential \(\mu \). \(T \) and \(\mu \) are adjusted until the system in equilibrium maintain an average of 99 particles in the orbital with \(E_0 = 0 \), one particle in the orbital \(E_1 = \varepsilon \), and a negligible occupancy of higher levels. Use the Bose-Einstein distribution to calculate the values of \(\mu \) and \(T \) in terms of \(\varepsilon \).