A two-dimensional classical gas of \(N \) particles, each of mass \(m \), maintained at temperature \(T \), is confined in the \(x-y \) plane by a radial potential:

\[
V(r) = \frac{1}{2}m\omega^2(r-R)^2.
\]

where \(\omega \) and \(R \) are positive constants, and \(r^2 = x^2 + y^2 \). For this problem, take \(\omega R \) to be so large that the probability of finding particles near \(r = 0 \) is essentially zero.

(a) Write down the normalized distribution function \(\rho(r,p) \) that gives the probability of finding any particular particle with position \(r \) and momentum \(p \).

(b) Calculate the internal energy per particle of the gas.

(c) Calculate the mean radius \(\langle r \rangle \) of the distribution.

(d) Calculate the expansion coefficient \(d\langle r \rangle/dT \) of the gas.