News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.

  • Accolades

The Center for Advanced Study has appointed seven new members to its permanent faculty – one of the highest forms of academic recognition the University of Illinois campus makes for outstanding scholarship. The new CAS Professors are Antoinette Burton, history; Gary Dell, psychology; Eduardo Fradkin, physics; Martin Gruebele, chemistry; Sharon Hammes-Schiffer, chemistry; Harry Liebersohn, history; and Catherine Murphy, chemistry. They join 21 other CAS Professors with permanent appointments, and they will remain full members of their home departments while also serving on the annual selection committee for the CAS Associates and Fellows program.

  • In the Media
  • Biological Physics

A common bacteria is furthering evidence that evolution is not entirely a blind process, subject to random changes in the genes, but that environmental stressors can also play a role. A NASA-funded team is the first group to design a method demonstrating how transposongs-DNA sequences that move positions within a genome-jump from place to place. The researchers saw that the jumping rate of these transposons, aptly-named "jumping genes" increases or decreases depending on factors in the environment, such as food supply.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory
  • ICMT
  • Institute for Condensed Matter Theory

Researchers at the University of Illinois at Urbana-Champaign and Princeton University have theoretically predicted a new class of insulating phases of matter in crystalline materials, pinpointed where they might be found in nature, and in the process generalized the fundamental quantum theory of Berry phases in solid state systems. What’s more, these insulators generate electric quadrupole or octupole moments—which can be thought of roughly as very specific electric fields—that are quantized. Quantized observables are a gold standard in condensed matter research, because experimental results that measure these observables have to, in principle, exactly match theoretical predictions—leaving no wiggle room for doubt, even in highly complex systems.

The research, which is the combined effort of graduate student Wladimir Benalcazar and Associate Professor of Physics Taylor Hughes of the Institute for Condensed Matter Theory at the U. of I., and Professor of Physics B. Andrei Bernevig of Princeton, is published in the July 7, 2017 issue of the journal Science.

  • Research

Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory.

Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices.

  • In the Media

As NASA prepares for this evening’s launch of the NICER space astronomy mission, Emeritus Professor of Physics Fred Lamb of the University of Illinois at Urbana-Champaign, is at the Kennedy Space Center, as a member of three of the mission’s Science Working Groups. The launch from the world-famous Pad 39A is scheduled for 5:55 P.M. EST.

Lamb, who continues to hold a post-retirement research appointment at Physics Illinois, is a world-recognized expert on the U.S. ground-based missile defense system. He served as co-chair of the American Physical Society’s Study Group on Boost-Phase Intercept for National Missile Defense, which published its report in July 2003. He has been fielding questions from the media on Tuesday's successful interception of an interncontinental ballistic missile during the latest test of its ground-based intercept system, as reported by the U.S. Missile Defense Agency.

Tuesday's ground-based interceptor launched from Vandenberg Air Force Base in California just after 3:30 p.m. EST. A little more than one hour later, the Pentagon confirmed it had successfully collided with an ICBM-class target over the Pacific Ocean, which had been launched from the Ronald Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll in the Marshall Islands, 4,200 miles away.

In this Q&A, Lamb briefly turns his attention away from the pending NICER launch to answer a few questions on the current status of the U.S. Ground-Based Missile Defense System.

  • Research
  • Particle Physics
  • High Energy Physics

What do you get when you revive a beautiful 20-year-old physics machine, carefully transport it 3,200 miles over land and sea to its new home, and then use it to probe strange happenings in a magnetic field? Hopefully you get new insights into the elementary particles that make up everything.

The Muon g-2 experiment, located at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, has begun its quest for those insights. This month, the 50-foot-wide superconducting electromagnet at the center of the experiment saw its first beam of muon particles from Fermilab’s accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists’ picture of the universe and how it works.

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

  • Research

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

  • Research
  • Condensed Matter Physics

Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

  • In the News

Physics Professor Nadya Mason has been selected for the 2018-19 Defense Science Study Group (DSSG). The DSSG is a program of education and study that introduces outstanding science and engineering professors to United States’ security challenges and encourages the scholars to apply their talents to these issues.
“It’s a great honor to have been selected for the 2018 DSSG class,” Mason shares. “I’m excited about the unique opportunity to learn more about our nation’s security issues and the technical challenges that face us… and the geek in me also looks forward to seeing some cool airplanes, ships and submarines!”

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.

  • Accolades

Professor Nigel Goldenfeld is the recipient of the 2017 Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, conferred on faculty members who have received national or international acclaim for contributions to their fields through exemplary research and impactful teaching.

Asst. Professor Gregory MacDougall is a recipient of the 2017 Dean’s Award for Excellence in Research. This award is presented annually to recognize the best research to emerge from the U. of I. College of Engineering’s 15 academic units.