Gammie selected for 2015 Simons Fellowship

Siv Schwink
3/17/2015 12:00 AM

U. of I. Professor of Physics and Astronomy Charles Gammie
U. of I. Professor of Physics and Astronomy Charles Gammie
Professor Charles Gammie has been named a 2015 Simons Fellow in Theoretical Physics by the Simons Foundation.

Gammie, who has joint appointments in astronomy and physics at the University of Illinois at Urbana-Champaign, will use the fellowship to continue his leading-edge theoretical work in black hole astrophysics, while on sabbatical next academic year at the University of Oxford in the United Kingdom. While abroad, Gammie will also enjoy an appointment as a visiting fellow at All Souls College in Oxford, for the fall (Michaelmas) term. 

A major thrust of Gammie’s theoretical work at the U. of I. is investigating the gravitational field of black holes, particularly in the unexplored strong field regime near the black hole event horizon, and using that to test general relativity, one of the fundamental theories of physics.

A related research focus for Gammie is exploring the physics that govern black hole accretions. Accreting black holes are among the most luminous objects in the universe; the radiation from supermassive accreting black holes at galactic centers can outshine their entire host galaxies. Accretion disks can also affect the evolution of a galaxy. Specifically, Gammie’s team was the first to develop fully relativistic fluid models of the luminous hot plasma that surrounds black holes, elucidating emission properties of hot plasmas, and developing techniques for relativistic radiative transport that can be used to simulate observations, including inclination, spin, and accretion rate of the black hole.

Gammie’s group at the U. of I. has been active in laying the theoretical groundwork for the North American Event Horizon Telescope and the European Black Hole Cam collaborations (EHT/BHC). These collaborations are working together to create an expanded network of millimeter-wavelength telescopes that, by 2017, may provide the first-ever high-contrast image of the silhouette of the supermassive black hole at the center of the Milky Way galaxy.

Gammie’s team is currently developing new models for Sgr A* at the center of the Milky Way galaxy, known to contain the supermassive black hole. The new models take into account the physical processes present in hot, dilute (collisionless) plasmas: heat conduction, viscosity, and decoupling of the temperatures of the plasma’s constituent ions and electrons.

Because dissipative relativistic fluid theories that incorporate these effects are impossible to solve with existing numerical methods, his team is devising novel numerical techniques to solve them. Existing models also fail to account for modification of the flow by its own radiation field, a negligible effect in Sgr A* that is nonetheless important for the only other black hole candidate—in the nucleus of the galaxy M87—that will be resolved by EHT/BHC. This year, his team will complete the first models that self-consistently (relativistically) incorporate radiative effects.

While on sabbatical next year, Gammie will explore problems motivated by his teams new models of Sgr A*. Gammie is looking forward to the rich intellectual environment and new collaborations this opportunity will afford:

“Oxford has an excellent astrophysics program—one of the best in Europe—and lots of good people working in my areas of interest. I'm particularly excited about working with an old mentor of mine, Steven Balbus, who is now Savilian Professor at Oxford. I'm also excited about talking to people at Oxford who observe black hole candidates, as well as those who work in plasma astrophysics. All Souls is a postgraduate college that is focused entirely on research, and I'm told it provides a wonderful, interesting community of scholars to visiting faculty," he shares.


The Simons Foundation is a private foundation based in New York City, incorporated in 1994 by Jim and Marilyn Simons, with the mission of advancing the frontiers of research in mathematics and the basic sciences. The Simons Foundation Mathematics and Physical Sciences (MPS) division supports leading research efforts in mathematics, theoretical physics and theoretical computer science.



Recent News

Assistant Professors Verena Martinez Outschoorn and Liang Yang of the Department of Physics at the University of Illinois at Urbana-Champaign have each been selected for 2017 NSF CAREER Awards. The Faculty Early Career Development (CAREER) Award of the National Science Foundation is conferred annually in support of junior faculty who exemplify the role of teacher-scholars by integrating outstanding research with excellent education. Receipt of this honor also reflects great promise for a lifetime of leadership within recipients’ respective fields.

Mason says, “there are so few of us, people get the impression that we are like unicorns – either non-existent or magical.” We are far from non-existent, but I find women of color to be quite magical. However, as Jesse Williams says, “Just because we’re magic, doesn’t mean we’re not real.”

  • Outreach

It’s up to you and your team to save the free world from evil forces plotting its destruction, and you have precisely 60 minutes to do it. You must find out what happened to Professor Schrödenberg, a University of Illinois physicist who disappeared after developing a top-secret quantum computer that can crack any digital-security encryption code in the world.  Unfortunately, the previous groups of special agents assigned to the case disappeared while investigating the very room in which you now find yourself locked up, Schrödenberg’s secret lab.

LabEscape is a new science-themed escape room now open at Lincoln Square Mall in Urbana, testing the puzzle-solving skills of groups of up to six participants at a time. Escape rooms, a new form of entertainment cropping up in cities across the U.S. and around the globe, provide in-person mystery-adventure experiences that have been compared to living out a video-game or movie script. A team of participants is presented with a storyline and locked into a room with only one hour to find and decipher a sequence of interactive puzzles that will unlock the door and complete the mission. Two escape room businesses are already in operation in the area, C-U Adventures in Time and Space in Urbana and Brainstorm Escapes in Champaign.


  • Research
  • AMO/Quantum Physics
  • Condensed Matter Physics

Topological insulators, an exciting, relatively new class of materials, are capable of carrying electricity along the edge of the surface, while the bulk of the material acts as an electrical insulator. Practical applications for these materials are still mostly a matter of theory, as scientists probe their microscopic properties to better understand the fundamental physics that govern their peculiar behavior.

Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state (the topological soliton state) of the topological insulator trans-polyacetylene. The transport properties of this organic polymer are typical of topological insulators and of the Su-Schrieffer-Heeger (SSH) model.

Physics graduate students Eric Meier and Fangzhao Alex An, working with Professor Bryce Gadway, developed a new experimental method, an engineered approach that allows the team to probe quantum transport phenomena.