CPLC second summer school a big success

Jaya Yodh
7/26/2010 12:00 AM

The Center for the Physics of Living Cells (CPLC), an NSF Physics Frontier Center that includes Illinois researchers from physics, chemistry, biochemistry, microbiology, and electrical engineering, as well as faculty from Baylor University and The University of Notre Dame, held its 2nd annual ‘Physics of Living Cells Summer School’ from July 19-24, 2010, in Urbana.

Participating faculty included CPLC Co-Directors Taekjip Ha and Klaus Schulten, Paul Selvin, Yann Chemla, Aleksei Aksimentiev, and Nigel Goldenfeld, all from the Department of Physics, Zan Luthey-Schulten and Martin Gruebele from the Department of Chemistry, and Ido Golding and Anna Sokac from Baylor University College of Medicine, Department of Biochemistry and Molecular Biology. 

These researchers are pioneering the creation of synergies between different approaches, such as single-molecule and live-cell experimental techniques and biological computation and theory, to investigate biological problems such as dynamics of protein folding and gene expression in live cells, mechanics of protein-DNA interactions during replication and recombination, and structural and functional dynamics of the ribosome translational apparatus.

The Summer School, coordinated by Jaya Yodh, CPLC Director of Education and Outreach, is targeted at senior undergraduates, graduate students, postdoctoral fellows, and researchers in the chemical and life sciences, biophysics, physics and engineering who are looking to expand their research skills in these fields. This year's Summer School included 28 graduate students, 7 post-doctoral fellows, and 1 assistant professor, with 36 percent coming from International institutions and 22 percent of the US students coming from Midwest institutions. This year, nine of the international students are also currently participating in a ‘Junior Nanotech Network’ student exchange program between the CPLC/University of Illinois and the University of Münich.

The weeklong Summer School program included two-plus days of "basic training" elements for all participating students including lectures by CPLC faculty, a CPLC poster session, and introductory mini-courses taught by CPLC graduate students and postdocs on optics, software (Matlab, Labview), and Visual Molecular Dynamics (VMD).  A subsequent four-day "advanced module," also taught by CPLC graduate students and postdocs, offered intensive training in one of the following eleven topics based on faculty areas of expertise: 1) single-molecule FRET (Taekjip Ha); 2) single-molecule FIONA (Paul Selvin); 3) single-molecule force and optical trapping: (Yann Chemla); 4) super-resolution fluorescence microscopy (PALM/STORM) (Taekjip Ha), 5) single-event detection in living cells—bacterial swimming (Ido Golding and Yann Chemla); 6) single-event detection in living cells—phage infection (Ido Golding); 7) tracking cell surface growth in living fruit fly embryos (Anna Sokac) 8) Fast Relaxation Imaging (FReI): protein folding dynamics in living cells (Martin Gruebele); and three computational biophysics modules—9) molecular dynamics simulations of single-molecule motors (Klaus Schulten); 10) dynamical networks in protein: RNA assemblies (Zan Luthey-Schulten); and 11) observing biomolecular interactions with atomic resolution (Alek Aksimentiev).

One of the unique aspects of the CPLC Summer School is that the Center’s focus— physical quantification of processes in living cells—makes it possible to offer hands-on, on-site training. "We have a critical mass of experimentalists, computational physicists, and theorists in the Center, which also allows for integrative training in a diverse range of experimental and computational techniques," said Summer School organizer Jaya Yodh. .

Another significant impact the Summer School provides is an excellent opportunity for the Center’s own graduate students and post-doctoral fellows—a total of 25 this year—to gain valuable teaching experience to their peers. This interaction serves as an excellent foundation for knowledge transfer and networking between the next generation of scientists interested in the physics of living systems.

The value of the Summer School can be summed up in this testimonial by Ruby May Sullan, a student from University of Toronto, “...Talk about comprehensive learning, hands-on instrumentation on state-of-the-art equipment, stimulating discussions with leading fellows in their field, great interaction with fellow graduate students, nice UIUC environment, fun, fun, fun—all in a week’s time—that's CPLC summer school! One of the best weeks I’ve had!”

Recent News

  • Alumni News
  • Accolades

Physics Illinois alumnus M. George Craford has been selected for the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, "for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices."

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. 

Toni Pitts, coordinator of recruiting and special programs at Physics Illinois, has received the Leadership in Diversity Award from The Office of Diversity, Equity and Access at the University of Illinois at Urbana-Champaign. This award recognizes exceptional dedication to and success in promoting diversity and inclusion via research, hiring practices, courses, programs and events.

  • Research

Nature is full of parasites—organisms that flourish and proliferate at the expense of another species. Surprisingly, these same competing roles of parasite and host can be found in the microscopic molecular world of the cell. A new study by two Illinois researchers has demonstrated that dynamic elements within the human genome interact with each other in a way that strongly resembles the patterns seen in populations of predators and prey.

The findings, published in Physical Review Letters by physicists Chi Xue and Nigel Goldenfeld, (DOI: 10.1103/PhysRevLett.117.208101) are an important step toward understanding the complex ways that genomes change over the lifetime of individual organisms, and how they evolve over generations.