CPLC second summer school a big success

Jaya Yodh
7/26/2010 12:00 AM

The Center for the Physics of Living Cells (CPLC), an NSF Physics Frontier Center that includes Illinois researchers from physics, chemistry, biochemistry, microbiology, and electrical engineering, as well as faculty from Baylor University and The University of Notre Dame, held its 2nd annual ‘Physics of Living Cells Summer School’ from July 19-24, 2010, in Urbana.

Participating faculty included CPLC Co-Directors Taekjip Ha and Klaus Schulten, Paul Selvin, Yann Chemla, Aleksei Aksimentiev, and Nigel Goldenfeld, all from the Department of Physics, Zan Luthey-Schulten and Martin Gruebele from the Department of Chemistry, and Ido Golding and Anna Sokac from Baylor University College of Medicine, Department of Biochemistry and Molecular Biology. 

These researchers are pioneering the creation of synergies between different approaches, such as single-molecule and live-cell experimental techniques and biological computation and theory, to investigate biological problems such as dynamics of protein folding and gene expression in live cells, mechanics of protein-DNA interactions during replication and recombination, and structural and functional dynamics of the ribosome translational apparatus.

The Summer School, coordinated by Jaya Yodh, CPLC Director of Education and Outreach, is targeted at senior undergraduates, graduate students, postdoctoral fellows, and researchers in the chemical and life sciences, biophysics, physics and engineering who are looking to expand their research skills in these fields. This year's Summer School included 28 graduate students, 7 post-doctoral fellows, and 1 assistant professor, with 36 percent coming from International institutions and 22 percent of the US students coming from Midwest institutions. This year, nine of the international students are also currently participating in a ‘Junior Nanotech Network’ student exchange program between the CPLC/University of Illinois and the University of Münich.

The weeklong Summer School program included two-plus days of "basic training" elements for all participating students including lectures by CPLC faculty, a CPLC poster session, and introductory mini-courses taught by CPLC graduate students and postdocs on optics, software (Matlab, Labview), and Visual Molecular Dynamics (VMD).  A subsequent four-day "advanced module," also taught by CPLC graduate students and postdocs, offered intensive training in one of the following eleven topics based on faculty areas of expertise: 1) single-molecule FRET (Taekjip Ha); 2) single-molecule FIONA (Paul Selvin); 3) single-molecule force and optical trapping: (Yann Chemla); 4) super-resolution fluorescence microscopy (PALM/STORM) (Taekjip Ha), 5) single-event detection in living cells—bacterial swimming (Ido Golding and Yann Chemla); 6) single-event detection in living cells—phage infection (Ido Golding); 7) tracking cell surface growth in living fruit fly embryos (Anna Sokac) 8) Fast Relaxation Imaging (FReI): protein folding dynamics in living cells (Martin Gruebele); and three computational biophysics modules—9) molecular dynamics simulations of single-molecule motors (Klaus Schulten); 10) dynamical networks in protein: RNA assemblies (Zan Luthey-Schulten); and 11) observing biomolecular interactions with atomic resolution (Alek Aksimentiev).

One of the unique aspects of the CPLC Summer School is that the Center’s focus— physical quantification of processes in living cells—makes it possible to offer hands-on, on-site training. "We have a critical mass of experimentalists, computational physicists, and theorists in the Center, which also allows for integrative training in a diverse range of experimental and computational techniques," said Summer School organizer Jaya Yodh. .

Another significant impact the Summer School provides is an excellent opportunity for the Center’s own graduate students and post-doctoral fellows—a total of 25 this year—to gain valuable teaching experience to their peers. This interaction serves as an excellent foundation for knowledge transfer and networking between the next generation of scientists interested in the physics of living systems.

The value of the Summer School can be summed up in this testimonial by Ruby May Sullan, a student from University of Toronto, “...Talk about comprehensive learning, hands-on instrumentation on state-of-the-art equipment, stimulating discussions with leading fellows in their field, great interaction with fellow graduate students, nice UIUC environment, fun, fun, fun—all in a week’s time—that's CPLC summer school! One of the best weeks I’ve had!”

Recent News

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.

  • Accolades

Professor Nigel Goldenfeld is the recipient of the 2017 Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, conferred on faculty members who have received national or international acclaim for contributions to their fields through exemplary research and impactful teaching.

Asst. Professor Gregory MacDougall is a recipient of the 2017 Dean’s Award for Excellence in Research. This award is presented annually to recognize the best research to emerge from the U. of I. College of Engineering’s 15 academic units.

  • Events

The universe is an extraordinary place. At the cosmic scale, the universe expands, galaxies form and swirl around their centers, stars ignite into being and undergo fiery deaths, massive objects set off gravitational ripples in space-time.  At the microscopic scale, the laws of quantum physics defy imagination, atoms together form complex building blocks of matter, and under ultra-cold conditions, quantum states of matter exhibit beguiling emergent behavior.

In the project-based course Phys 498 Art, Where the Arts meet Physics, the class explored this extraordinary place under three umbrellas – the Universe, Fluids and Flow, and the Quantum World. You are warmly invited to experience the world they have created.

  • In the Media

SAVOY, ILL - Pulling a tablecloth off of a table filled with dishes or riding around on a fire-extinguisher powered scooter may not seem like activities that teach the fundamentals of science. However, one program that has existed in Central Illinois for nearly 25 years has been doing just that. The University of Illinois Physics Van program teaches students from Kindergarten through 6th grade all about science in a fun and interactive way. 

"The larger the word you use when explaining something you start to lose kids interest. You have to show things on a really life sized level." says Brian Korn, Coordinator of the Physics Van 

The Physics Van presents a variety of programs to students, including teaching the principals of electricity and the laws of gravity.