Ultrafast imaging of electron waves in graphene

Celia Elliott
11/5/2010 12:00 AM

The fastest movies ever made of electron motion, created by scattering x-rays off of graphene, have shown that the interaction among its electrons is surprisingly weak.

Graphene is a single atomic layer of carbon whose unusual electronic structure makes it a candidate for a new generation of low-cost, flexible electronics. A major outstanding question is whether the electrons in graphene move independently, or if their motion is correlated by Coulomb repulsion.

Using advanced x-ray scattering techniques, physicists in Peter Abbamonte’s group at the University of Illinois at Urbana-Champaign have imaged the motion of electrons in graphene with resolutions of 0.533 Å and 10.3 attoseconds. Their results were published on November 5 in Science.

Exactly how small and how fast are these measurements? An angstrom is 1/10,000,000,000 of a meter, about the width of a hydrogen atom. And an attosecond is to a second as a second is to the age of the universe.

The researchers found that graphene screens Coulomb interactions surprisingly effectively, causing it to act like a simple, independent-electron semimetal. Their work explains several mysteries, including why freestanding graphene fails to become an insulator as predicted. The study also demonstrates a new approach to studying ultrafast dynamics, creating a new window on the most fundamental properties of materials.

The experiments were carried out at the Frederick Seitz Materials Research Laboratory at the University of Illinois and the Advanced Photon Source at Argonne National Laboratory.

Recent News

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

  • Research

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

  • Research
  • Condensed Matter Physics

Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.