Continued success for CPLC Summer School

Jaya Yodh
7/28/2011 12:00 AM

The Center for the Physics of Living Cells (CPLC), an NSF Physics Frontier Center based in the Department of Physics at the University of Illinois at Urbana-Champaign, recently completed its third annual Physics of Living Cells Summer School, held from July 18-23, 2011, on the Urbana campus. The summer school is designed for graduate students, postdoctoral fellows, and researchers who seek to expand their skills in these fields and apply these technologies to their research.

“The CPLC Summer School was a fantastic experience to learn about innovative and current research ongoing at the interface between physics and the life sciences," said Steven Quinn, a graduate student from University of St. Andrews, Scotland. "I not only gained valuable new insights into single-molecule techniques, many of which will be applicable to my own research, but was able to discuss my own work and share ideas with my peers in such a prestigious biophysics department. The basic training in conjunction with the advanced module provides a solid basis for any single-molecule biophysicist looking to expand his/her own knowledge of the field.”

CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
 The CPLC, co-directed by physics professors, Taekjip Ha and Klaus Schulten, brings emerging technologies in experimental single-molecule and single-cell biophysics together with computational and theoretical biology to create a quantitative picture of the living cell.

This year, nine participating faculty from UI Departments of Physics and Chemistry, as well as the Baylor University College of Medicine Department of Biochemistry and Molecular Biology, offered four-day intensive training in eight advanced topics with an emphasis on integration of theory and computational biology with experimental systems.

These topics included: 1) Single-molecule FRET: (Taekjip Ha with theory integration by Zan Luthey-Schulten and Karin Dahmen); 2) Single-molecule FIONA (Paul Selvin with theory integration by Klaus Schulten and Karin Dahmen); 3) Single-molecule force and optical trapping: (Yann Chemla with theory integration by Alek Aksimentiev); 4) Super-resolution fluorescence microscopy – STORM (Taekjip Ha), 5-6) Single-event detection in living cells – bacterial swimming (Ido Golding and Yann Chemla) and phage infection (Ido Golding); 7) Membrane dynamics in living fruit fly embryos (Anna Sokac), and 8) Fast Relaxation Imaging: heat shock response in living cells (Martin Gruebele). The advanced modules were complemented by faculty lectures and concluded with student presentations.

According to Jaya Yodh, CPLC Director of Education and Outreach, the summer school brought 27 students to the Center, including 19 graduate students, 7 postdoctoral fellows, and 1 professor, with 26% of the participants from international institutions. More than one-quarter of the US students came from universities in the Midwest. Student expertise spanned a broad range of disciplines, including physics, biophysics, chemistry, biochemistry, bioengineering, and the life sciences, indicative of the highly interdisciplinary nature of CPLC research and technologies.
 
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
One of the key elements of the continued success of the summer school is the near 1:1 ratio of teaching assistants (TAs) to students. This year, a group of  26 TAs comprising Center graduate students and postdoctoral fellows were involved not only in teaching the specialized advanced modules, but also in developing and teaching of introductory mini-courses on Optics, Visual Molecular Dynamics (VMD), MATLAB and LabVIEW programming applications. 
 

Thus, the CPLC summer school provides a unique opportunity for hands-on training in state-of-the-art biophysical tools for the next generation of scientists as well as for the Center’s own trainees, who also gain valuable teaching experience. For example, one unique form of training for both TAs and students evolved as a result of TAs from different labs working directly together to integrate theory and experiment within an advanced module. The summer school also offered venues for scientific and social interactions such as a poster session for members of CPLC laboratories to share their research with visiting students. 

All in all, the CPLC summer school continues to lay a foundation for fostering and training a global network of young scientists interested in the physics of living systems.

Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.
Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.

Recent News

  • Research

Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory.

Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices.

  • In the Media

As NASA prepares for this evening’s launch of the NICER space astronomy mission, Emeritus Professor of Physics Fred Lamb of the University of Illinois at Urbana-Champaign, is at the Kennedy Space Center, as a member of three of the mission’s Science Working Groups. The launch from the world-famous Pad 39A is scheduled for 5:55 P.M. EST.

Lamb, who continues to hold a post-retirement research appointment at Physics Illinois, is a world-recognized expert on the U.S. ground-based missile defense system. He served as co-chair of the American Physical Society’s Study Group on Boost-Phase Intercept for National Missile Defense, which published its report in July 2003. He has been fielding questions from the media on Tuesday's successful interception of an interncontinental ballistic missile during the latest test of its ground-based intercept system, as reported by the U.S. Missile Defense Agency.

Tuesday's ground-based interceptor launched from Vandenberg Air Force Base in California just after 3:30 p.m. EST. A little more than one hour later, the Pentagon confirmed it had successfully collided with an ICBM-class target over the Pacific Ocean, which had been launched from the Ronald Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll in the Marshall Islands, 4,200 miles away.

In this Q&A, Lamb briefly turns his attention away from the pending NICER launch to answer a few questions on the current status of the U.S. Ground-Based Missile Defense System.

  • Research
  • Particle Physics
  • High Energy Physics

What do you get when you revive a beautiful 20-year-old physics machine, carefully transport it 3,200 miles over land and sea to its new home, and then use it to probe strange happenings in a magnetic field? Hopefully you get new insights into the elementary particles that make up everything.

The Muon g-2 experiment, located at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, has begun its quest for those insights. This month, the 50-foot-wide superconducting electromagnet at the center of the experiment saw its first beam of muon particles from Fermilab’s accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists’ picture of the universe and how it works.

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.