Continued success for CPLC Summer School

Jaya Yodh

The Center for the Physics of Living Cells (CPLC), an NSF Physics Frontier Center based in the Department of Physics at the University of Illinois at Urbana-Champaign, recently completed its third annual Physics of Living Cells Summer School, held from July 18-23, 2011, on the Urbana campus. The summer school is designed for graduate students, postdoctoral fellows, and researchers who seek to expand their skills in these fields and apply these technologies to their research.

“The CPLC Summer School was a fantastic experience to learn about innovative and current research ongoing at the interface between physics and the life sciences," said Steven Quinn, a graduate student from University of St. Andrews, Scotland. "I not only gained valuable new insights into single-molecule techniques, many of which will be applicable to my own research, but was able to discuss my own work and share ideas with my peers in such a prestigious biophysics department. The basic training in conjunction with the advanced module provides a solid basis for any single-molecule biophysicist looking to expand his/her own knowledge of the field.”

CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
 The CPLC, co-directed by physics professors, Taekjip Ha and Klaus Schulten, brings emerging technologies in experimental single-molecule and single-cell biophysics together with computational and theoretical biology to create a quantitative picture of the living cell.

This year, nine participating faculty from UI Departments of Physics and Chemistry, as well as the Baylor University College of Medicine Department of Biochemistry and Molecular Biology, offered four-day intensive training in eight advanced topics with an emphasis on integration of theory and computational biology with experimental systems.

These topics included: 1) Single-molecule FRET: (Taekjip Ha with theory integration by Zan Luthey-Schulten and Karin Dahmen); 2) Single-molecule FIONA (Paul Selvin with theory integration by Klaus Schulten and Karin Dahmen); 3) Single-molecule force and optical trapping: (Yann Chemla with theory integration by Alek Aksimentiev); 4) Super-resolution fluorescence microscopy – STORM (Taekjip Ha), 5-6) Single-event detection in living cells – bacterial swimming (Ido Golding and Yann Chemla) and phage infection (Ido Golding); 7) Membrane dynamics in living fruit fly embryos (Anna Sokac), and 8) Fast Relaxation Imaging: heat shock response in living cells (Martin Gruebele). The advanced modules were complemented by faculty lectures and concluded with student presentations.

According to Jaya Yodh, CPLC Director of Education and Outreach, the summer school brought 27 students to the Center, including 19 graduate students, 7 postdoctoral fellows, and 1 professor, with 26% of the participants from international institutions. More than one-quarter of the US students came from universities in the Midwest. Student expertise spanned a broad range of disciplines, including physics, biophysics, chemistry, biochemistry, bioengineering, and the life sciences, indicative of the highly interdisciplinary nature of CPLC research and technologies.
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
One of the key elements of the continued success of the summer school is the near 1:1 ratio of teaching assistants (TAs) to students. This year, a group of  26 TAs comprising Center graduate students and postdoctoral fellows were involved not only in teaching the specialized advanced modules, but also in developing and teaching of introductory mini-courses on Optics, Visual Molecular Dynamics (VMD), MATLAB and LabVIEW programming applications. 

Thus, the CPLC summer school provides a unique opportunity for hands-on training in state-of-the-art biophysical tools for the next generation of scientists as well as for the Center’s own trainees, who also gain valuable teaching experience. For example, one unique form of training for both TAs and students evolved as a result of TAs from different labs working directly together to integrate theory and experiment within an advanced module. The summer school also offered venues for scientific and social interactions such as a poster session for members of CPLC laboratories to share their research with visiting students. 

All in all, the CPLC summer school continues to lay a foundation for fostering and training a global network of young scientists interested in the physics of living systems.

Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.
Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.

Recent News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.