Continued success for CPLC Summer School

Jaya Yodh
7/28/2011 12:00 AM

The Center for the Physics of Living Cells (CPLC), an NSF Physics Frontier Center based in the Department of Physics at the University of Illinois at Urbana-Champaign, recently completed its third annual Physics of Living Cells Summer School, held from July 18-23, 2011, on the Urbana campus. The summer school is designed for graduate students, postdoctoral fellows, and researchers who seek to expand their skills in these fields and apply these technologies to their research.

“The CPLC Summer School was a fantastic experience to learn about innovative and current research ongoing at the interface between physics and the life sciences," said Steven Quinn, a graduate student from University of St. Andrews, Scotland. "I not only gained valuable new insights into single-molecule techniques, many of which will be applicable to my own research, but was able to discuss my own work and share ideas with my peers in such a prestigious biophysics department. The basic training in conjunction with the advanced module provides a solid basis for any single-molecule biophysicist looking to expand his/her own knowledge of the field.”

CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
CPLC graduate student, Keith Cassidy (right), teaching VMD to 2011 Summer School student, Christoph Engl.
 The CPLC, co-directed by physics professors, Taekjip Ha and Klaus Schulten, brings emerging technologies in experimental single-molecule and single-cell biophysics together with computational and theoretical biology to create a quantitative picture of the living cell.

This year, nine participating faculty from UI Departments of Physics and Chemistry, as well as the Baylor University College of Medicine Department of Biochemistry and Molecular Biology, offered four-day intensive training in eight advanced topics with an emphasis on integration of theory and computational biology with experimental systems.

These topics included: 1) Single-molecule FRET: (Taekjip Ha with theory integration by Zan Luthey-Schulten and Karin Dahmen); 2) Single-molecule FIONA (Paul Selvin with theory integration by Klaus Schulten and Karin Dahmen); 3) Single-molecule force and optical trapping: (Yann Chemla with theory integration by Alek Aksimentiev); 4) Super-resolution fluorescence microscopy – STORM (Taekjip Ha), 5-6) Single-event detection in living cells – bacterial swimming (Ido Golding and Yann Chemla) and phage infection (Ido Golding); 7) Membrane dynamics in living fruit fly embryos (Anna Sokac), and 8) Fast Relaxation Imaging: heat shock response in living cells (Martin Gruebele). The advanced modules were complemented by faculty lectures and concluded with student presentations.

According to Jaya Yodh, CPLC Director of Education and Outreach, the summer school brought 27 students to the Center, including 19 graduate students, 7 postdoctoral fellows, and 1 professor, with 26% of the participants from international institutions. More than one-quarter of the US students came from universities in the Midwest. Student expertise spanned a broad range of disciplines, including physics, biophysics, chemistry, biochemistry, bioengineering, and the life sciences, indicative of the highly interdisciplinary nature of CPLC research and technologies.
 
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
CPLC postdoctoral fellow, Hajin Kim (rear) training 2011 summer school students, Jessica Killian and Jinrang Kim in single-molecule total internal reflection fluorescence microscopy.
One of the key elements of the continued success of the summer school is the near 1:1 ratio of teaching assistants (TAs) to students. This year, a group of  26 TAs comprising Center graduate students and postdoctoral fellows were involved not only in teaching the specialized advanced modules, but also in developing and teaching of introductory mini-courses on Optics, Visual Molecular Dynamics (VMD), MATLAB and LabVIEW programming applications. 
 

Thus, the CPLC summer school provides a unique opportunity for hands-on training in state-of-the-art biophysical tools for the next generation of scientists as well as for the Center’s own trainees, who also gain valuable teaching experience. For example, one unique form of training for both TAs and students evolved as a result of TAs from different labs working directly together to integrate theory and experiment within an advanced module. The summer school also offered venues for scientific and social interactions such as a poster session for members of CPLC laboratories to share their research with visiting students. 

All in all, the CPLC summer school continues to lay a foundation for fostering and training a global network of young scientists interested in the physics of living systems.

Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.
Laser optics for 'Super Resolution Fluorescence Microscopy Advanced Module' in 2011 CPLC Summer school.

Recent News

  • Research
  • Condensed Matter Physics

Physics professor Taylor Hughes and mechanical science and engineering professor Gaurav Bahl of the University of Illinois at Urbana-Champaign are part of an interdisciplinary team that will study non-reversible sound wave propagation over the next four years, with a range of promising potential applications.

The National Science Foundation has announced a $2-million research award to the team, which includes University of Oregon physics professor Hailin Wang and Duke University electrical and computer engineering professor Steven Cummer. The grant is part of a broader $18-million NSF-funded initiative, the Emerging Frontiers in Research and Innovation (EFRI) program, supporting nine teams—a total of 37 researchers at 17 institutions—to pursue fundamental research in the area of new light and acoustic wave propagation, known as NewLAW.

  • In the Media

Edward Seidel, director of the National Center for Supercomputing Applications, was named interim vice president for research to succeed Lawrence Schook, a biomedical researcher who announced last spring that he would step down after more than five years to return to his research. Seidel will assume office Sept. 1, pending approval from UI trustees.

  • Accolades

Andrea Young, a physics professor at the University of California, Santa Barbara, has been awarded the 2016 McMillan Award for outstanding contributions in condensed matter physics. Named in memory of physicist William McMillan of the University of Illinois at Urbana-Champaign, the award is presented annually for distinguished research performed within five years of receiving a Ph.D.

  • Research
  • Condensed Matter Physics

Experimenters have approximated the Leggett and Garg test. In 2011, White and colleagues demonstrated the extrastrong correlations in quantum optics, although in an average way and not with a single photon. Now, Joseph Formaggio, a neutrino physicist at the Massachusetts Institute of Technology in Cambridge, and colleagues provide a demonstration using data from the Main Injector Neutrino Oscillation Search (MINOS) experiment at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, which fires neutrinos at near-light-speed 735 kilometers to a 5.4-kiloton detector in the Soudan Mine in Minnesota.