Watching 'jumping genes' in action: Real-time observation of transposon activity in living cells

Siv Schwink
6/13/2016 1:19 PM

Asst. Professor of Physics Thomas E. Kuhlman
Asst. Professor of Physics Thomas E. Kuhlman
Swanlund Professor of Physics Nigel Goldenfeld
Swanlund Professor of Physics Nigel Goldenfeld
“Jumping genes” are ubiquitous. Every domain of life hosts these sequences of DNA that can “jump” from one position to another along a chromosome; in fact, nearly half the human genome is made up of jumping genes. Depending on their specific excision and insertion points, jumping genes can interrupt or trigger gene expression, driving genetic mutation and contributing to cell diversification. Since their discovery in the 1940s, researchers have been able to study the behavior of these jumping genes, generally known as transposons or transposable elements (TE), primarily through indirect methods that infer individual activity from bulk results.  However, such techniques are not sensitive enough to determine precisely how or why the transposons jump, and what factors trigger their activity.

Reporting in the Proceedings of the National Academy of Sciences, scientists at the University of Illinois at Urbana-Champaign have observed jumping gene activity in real time within living cells. The study is the collaborative effort of physics professors Thomas Kuhlman and Nigel Goldenfeld, at the Center for the Physics of Living Cells, a National Science Foundation Physics Frontiers Center.

Real time transposable element activity in a small colony of bacteria, where excision of the transposable element causes the cell to light up (false colored green), and the excision reaction is caused by transposase protein (false colored magenta). Video courtesy of T.E. Kuhlman and N. Goldenfeld, University of Illinois at Urbana-Champaign, reproduced with permission from Proceedings of the National Academy of Sciences USA.
Real time transposable element activity in a small colony of bacteria, where excision of the transposable element causes the cell to light up (false colored green), and the excision reaction is caused by transposase protein (false colored magenta). Video courtesy of T.E. Kuhlman and N. Goldenfeld, University of Illinois at Urbana-Champaign, reproduced with permission from Proceedings of the National Academy of Sciences USA.

"In this study, we were able to see that there is actually more of this jumping gene action going on than might have been expected from previous studies,” said Kuhlman, whose team performed the in vivo experiments. “What’s more, we learned that the rates at which these genes jump depend sensitively on how the cells are growing—if there is food available for the cells to grow, for example. In other words, jumping gene activation isn’t entirely random, it’s dependent on environmental feedback."

To observe these individual cellular-evolution events in living cells, Kuhlman’s team devised a synthetic biological system using the bacterium Escherichia coli. The scientists coupled the expression of fluorescent reporters—genes that encode (in this case, blue and yellow) fluorescent proteins—to the jumping activity of the transposons. The scientists could then visually record the transposon activity using fluorescent microscopy.

University of Illinois Assistant Professor of Physics Thomas E. Kuhlman discusses upcoming experiments with graduate students Gloria Lee and Hyuneil Kim in his laboratory at the Center for the Physics of Living Cells. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
University of Illinois Assistant Professor of Physics Thomas E. Kuhlman discusses upcoming experiments with graduate students Gloria Lee and Hyuneil Kim in his laboratory at the Center for the Physics of Living Cells. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
“These are genes that hop around and change location within the genome of a cell,” said Kuhlman. “We hooked that activity up to a molecular system, such that when they start hopping around, the whole cell fluoresces. In our experiment, cells fluoresced most when they weren’t very happy. One school of thought suggests that an increased mutation rate like this might be an advantage in such unhappy conditions, for cells to diversify.”

In order to help design the experiment and to calculate what would have happened if the jumping occurred in a purely random fashion, Goldenfeld’s team developed computer simulations of the growth of bacterial colonies and predicted what the experimental signal would look like in the random case. These calculations showed that the experiments could not simply be interpreted as random transposon activity and even provided clues as to sources of non-randomness, including environmental feedback and heredity.

“Our work involved a good deal of computational image analysis, followed by statistical analysis,” said Goldenfeld. “To extract signals and conclusions from the raw data, simulation and theoretical calculations were integral to the experimental design and interpretation.  This sort of collaborative project was really only possible with the unique structure provided by the Center for the Physics of Living Cells.” 

 

E. coli cells carrying a “wildtype” version of the transposable element grow in a monolayer within a microfluidic device; a single cell is seen to light up green upon experiencing a transposable element event. Video courtesy of T.E. Kuhlman, University of Illinois at Urbana-Champaign

“The over-arching long-term research goal is a deeper understanding of how evolution works at the molecular level. Direct observation of how genomes in cells restructure themselves allows for a precise determination of adaptation rates and may shed light on a host of important evolutionary questions, ranging from the emergence of life to the spread of cancer, where cells undergo rapid mutations and transformations of their genomes,” added Kuhlman.

Kuhlman and Goldenfeld are members of the Carl R. Woese Institute for Genomic Biology and the Department of Physics at the University of Illinois at Urbana-Champaign. The work involved several graduate students, including lead author Hyuneil Kim, Gloria Lee, Nicholas Sherer and Michael Martini. 

This release is based upon research performed at the Center for the Physics of Living Cells, a Physics Frontiers Center supported by the National Science Foundation, and at the NASA Astrobiology Institute for Universal Biology supported by NASA, both located on the University of Illinois at Urbana-Champaign campus. Kuhlman’s research is additionally supported by a 2015 Sloan Research Fellowship from the Alfred P. Sloan Foundation. The conclusions presented are those of the scientists, and not necessarily those of the funding agencies.

Recent News

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

  • Research

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

  • Research
  • Condensed Matter Physics

Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.