Illinois physicist to lead $8 million NASA-funded study

Siv Schwink and Nicholas Vasi
9/7/2012

Research team assembled to uncover universal aspects of the evolution of life in deep time

Urbana — An interdisciplinary team from the University of Illinois at Urbana-Champaign is among five new research groups selected to join the NASA Astrobiology Institute (NAI) to study the origin and evolution of life. The NAI invitation comes with a five-year research grant totaling about $8 million.
 
Nigel Goldenfeld, Swanlund Professor of Physics and leader of the Biocomplexity research theme at the Institute for Genomic Biology (IGB), will serve as the principal investigator.
 
“We want to help answer not only the basic questions of ‘How does life begin and evolve?’ and ‘Is there life beyond Earth?’ but also ‘Why does life exist at all?’” said Goldenfeld. “We are really excited to be a part of NAI. It’s a unique group, and NASA is the leading scientific organization trying to address these questions."
 
The team’s goal will be to characterize the fundamental principles governing the origin and evolution of life anywhere in the universe. The multidisciplinary effort to define and characterize “universal biology” will include leading-edge scientists from the fields of microbiology, geobiology, computational chemistry, genomics, and physics.
 
The Illinois team will use genomics to explore deep evolutionary time through computer simulations and laboratory investigations, looking for signatures of early collective states of life that would have preceded the rise of individual organisms on earth.
 
Goldenfeld said, “With modern genomics, we now have the data and the tools to examine carefully the evolutionary relationships between parts of the cell. And even more than that, theory gives us a clear hypothesis to test: namely that early life was communal, and indeed had to have been, based on general universal biology considerations related to the detailed structure of the genetic code.” 
 
In this aspect, the work will build on the suggestions made in the 1970’s by 2003 Crafoord Prize winner and co-investigator Carl Woese about the nature of early life, and followed up three decades later in a study by Kalin Vetsigian, Carl Woese and Nigel Goldenfeld. In their paper, “Communal evolution of the genetic code" (Proc. Natl. Acad. Sci. 103, 10696-10701, 2006.) the researchers used artificial life simulations to show that the uniqueness and robustness of our genetic code could only have evolved if earliest life—from which our first genomic ancestor sprung three billion years ago—existed as a collective.
 
“In this collective, genetic material would have been exchanged horizontally across generations, rather than just vertically from parent to offspring. Picture microbial organisms that would have sucked each other up and spit each other out. With this, the speed of evolution goes up.” said Goldenfeld.
 
In a complementary study, the group plans to perform laboratory work to investigate how individual cells sense, respond and adapt to changing environments.
 
“We say that evolution is a random process—but it’s not completely clear that this is true,” said Goldenfeld. “We will look at cells under stress to quantify how they adapt. Could stress trigger mutation, or does it just select for it? This has never been properly tested to everyone’s satisfaction, and could be a significant factor in understanding the limits to where life can exist.”
 
Additionally, the team will look for signatures of the major transitions that life must make as evolution changes from communal to individual organismal lineages.  Co-investigators on the research team include Elbert Branscomb, Isaac Cann, Lee DeVille, Bruce Fouke, Rod Mackie, Gary Olsen, Zan Luthey-Schulten, Charles Werth, Rachel Whitaker, and Carl Woese from Illinois, Scott Dawson from the University of California, Davis, and Philip Hastings and Susan Rosenberg from Baylor College of Medicine, Houston.
 
The research will be based in the university’s Institute for Genomic Biology. IGB Director Gene Robinson said, “This bold research program fits perfectly at the IGB, which was established to help faculty compete for the large grants that are necessary to address grand challenges with a team-based multidisciplinary approach. The NASA award reflects the creativity and vision of the faculty in the Biocomplexity research theme, the IGB, and the campus as a whole.”
 
In addition to the research, novel educational activities related to the field of astrobiology will take place. These will include not only formal education in astrobiology at the undergraduate level, but also a massively online open course as part of the university’s initiative in this arena. Other public outreach will include a partnership with a science program at the middle school science level, the development of short web-based videos on astrobiology concepts and findings called “AstroFlix”, and a new astrobiology course for lifelong learners in the community.
 
Goldenfeld said this project is potentially of great interest to astrobiology: “It is important to develop the field of universal biology, because we may never find traces of life on other planets. But if we understand that life is generic, maybe even an expected outcome of the laws of physics, then we’ll know for sure that we are not alone.” 

Recent News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.