World's most powerful digital camera records first images in hunt for dark energy

Siv Schwink and Tricia Barker
9/17/2012 12:00 AM

Illinois contributes camera components, data intensive computing, and scientific analyses

Champaign—Eight billion years ago, rays of light from distant galaxies began their long journey to Earth.  Now that ancient starlight found its way to a mountaintop in Chile, where the newly-constructed Dark Energy Camera, the most powerful sky-mapping machine ever created, captured and recorded it for the first time.
 
That light may hold the answer to one of the biggest mysteries in physics–why the expansion of the universe is speeding up.
 
The 570-megapixel camera, roughly the size of a phone booth, is the product of eight years of planning and construction by scientists, engineers, and technicians on three continents. Much of the camera’s data acquisition electronics and control software were built in Urbana by a team of Illinois particle physicists led by Professor Jon Thaler.
 
With this device, scientists in the international Dark Energy Survey (DES) collaboration will undertake the largest galaxy survey ever attempted and will use that data—to be stored and processed at Illinois’ National Center for Supercomputing Applications (NCSA)—to carry out four probes of dark energy: studying galaxy clusters, supernovas, the large-scale clumping of galaxies, and weak gravitational lensing. This is the first time all four methods will be possible in a single experiment.
 
Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration.
Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration.
“The combined analyses of the scientists in the DES collaboration are expected to contribute significantly to our understanding of the properties of dark energy and dark matter,” said Thaler. “The Illinois physics team will look at supernovas to chart the expansion of the universe over time, and at gravitational lensing to determine the history of the formation of structure (galaxies and galaxy clusters).
 
“Gravitational lensing is similar to optical lensing: just like glass, gravity also bends light. Light from distant stars and galaxies bends on its way to Earth as it is pulled by the gravity of objects that it passes—this bending distorts the shapes of distant galaxies. Normal matter and dark matter both have this effect, so measuring this distortion tells us how the dark matter contributes to galactic structure,” he said.
 
Over five years, the survey will create detailed color images of one-eighth of the sky, or 5,000 square degrees, to discover and measure 300 million galaxies, 100,000 galaxy clusters, and 4,000 supernovas.  
 
“Hidden within the galaxy cluster distribution are clues to the nature of the universe we live in,” said Dr. Robert Gruendl of the Illinois Astronomy Department.
 
Gruendl, together with Don Petravick of NCSA and other collaborators have developed and will operate a data management framework for processing, calibrating, and archiving the massive amounts of data—petabytes over the lifetime of the survey—that will be collected for the DES. This system relies on the iForge cluster and a 100-terabyte Oracle database at NCSA and also uses high-performance computing resources provided by the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) project.
 
Full Dark Energy Camera image of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. The center of the cluster is the clump of galaxies in the upper portion of the image. The prominent galaxy in the lower right of the image is the barred spiral galaxy NGC 1365. Credit: Dark Energy Survey Collaboration.
Full Dark Energy Camera image of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. The center of the cluster is the clump of galaxies in the upper portion of the image. The prominent galaxy in the lower right of the image is the barred spiral galaxy NGC 1365. Credit: Dark Energy Survey Collaboration.
"NCSA provides the networking, computing, and archiving capabilities and sophisticated tools that this type of data-intensive science requires,” said NCSA’s Don Petravick, who leads the data management project. "This allows astronomers and physicists to focus on analysis of science-ready data, rather than spending their time on preliminary processing or technical issues."
 
The Dark Energy Survey is expected to begin in December, after the camera is fully tested, and will take advantage of the excellent atmospheric conditions in the Chilean Andes to deliver pictures with the sharpest resolution seen in a wide-field astronomy survey.
 
The DES is supported by funding from the U.S. Department of Energy; the National Science Foundation; funding agencies in the United Kingdom, Spain, Brazil, Germany, and Switzerland; and the participating DES institutions.

 

Recent News

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.

  • Accolades

Professor Nigel Goldenfeld is the recipient of the 2017 Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, conferred on faculty members who have received national or international acclaim for contributions to their fields through exemplary research and impactful teaching.

Asst. Professor Gregory MacDougall is a recipient of the 2017 Dean’s Award for Excellence in Research. This award is presented annually to recognize the best research to emerge from the U. of I. College of Engineering’s 15 academic units.

  • Events

The universe is an extraordinary place. At the cosmic scale, the universe expands, galaxies form and swirl around their centers, stars ignite into being and undergo fiery deaths, massive objects set off gravitational ripples in space-time.  At the microscopic scale, the laws of quantum physics defy imagination, atoms together form complex building blocks of matter, and under ultra-cold conditions, quantum states of matter exhibit beguiling emergent behavior.

In the project-based course Phys 498 Art, Where the Arts meet Physics, the class explored this extraordinary place under three umbrellas – the Universe, Fluids and Flow, and the Quantum World. You are warmly invited to experience the world they have created.

  • In the Media

SAVOY, ILL - Pulling a tablecloth off of a table filled with dishes or riding around on a fire-extinguisher powered scooter may not seem like activities that teach the fundamentals of science. However, one program that has existed in Central Illinois for nearly 25 years has been doing just that. The University of Illinois Physics Van program teaches students from Kindergarten through 6th grade all about science in a fun and interactive way. 

"The larger the word you use when explaining something you start to lose kids interest. You have to show things on a really life sized level." says Brian Korn, Coordinator of the Physics Van 

The Physics Van presents a variety of programs to students, including teaching the principals of electricity and the laws of gravity.