MINOS and Daya Bay join forces to narrow the window on sterile neutrinos

Jen-Chieh Peng and Siv Schwink
10/7/2016 12:00 PM

Physics Illinois alumnus En-Chuan Huang
Physics Illinois alumnus En-Chuan Huang
Professor of Physics Jen-Chieh Peng
Professor of Physics Jen-Chieh Peng
Do sterile neutrinos—hypothetical particles that do not interact with matter except through gravity—really exist? If so, this would solve some of today’s major mysteries in particle physics and cosmology. For two decades, researchers around the globe have sought evidence that would prove or disprove the reality of sterile neutrinos, with inconclusive outcomes.

Now, a new result has all but ruled out the possible existence of a light sterile neutrino in a regime suggested by an earlier experiment. Researchers from two major international collaborations—the Main Injector Neutrinos Oscillation Search (MINOS) at Fermi National Laboratory and the Daya Bay Reactor Neutrino Experiment in the south of China—joined forces, each contributing years of data that, taken together, paint a nearly complete picture. The joint result published in Physical Review Letters has significantly shrunk the hiding space for a light sterile neutrino.

Hints of a new type of neutrino beyond the well-known three types—electron, muon, and tau—first surfaced in the 1990s, when scientists at the Los Alamos National Laboratory were looking for neutrino oscillations, the morphing of one type of neutrino into another type. Members of the Liquid Scintillator Neutrino Detector (LSND) experiment announced evidence of muon neutrinos oscillating into electron neutrinos. However, the oscillation occurred much faster than the oscillations discovered by Super-Kamiokande that led to the 2015 Nobel Prize in Physics.

If the LSND results are correct and due to neutrino oscillations, the only explanation is the existence of a fourth type of neutrino. But this new neutrino would have to be much stranger than anything seen before. Being “sterile,” it would not interact with matter except through gravity. Light sterile neutrinos are also among the leading candidates to resolve some outstanding puzzles in astrophysics and cosmology.

Over the last twenty years, a number of experiments have tried to confirm or refute the LSND findings, but the results have been inconclusive. The new result released by the MINOS and Daya Bay experiments strongly suggests that the ghost-like sterile neutrinos do not explain the LSND result after all.

The LSND experiment saw muon-type antineutrinos turning into electron-type antineutrinos, so to address the LSND observations, scientists must look at both types of neutrinos simultaneously. That’s why the collaboration between Daya Bay and MINOS was crucial, according to En-Chuan Huang, a postdoctoral fellow at Los Alamos National Laboratory who participated in the Daya Bay research as a graduate student at the University of Illinois at Urbana-Champaign Department of Physics, working under Professor Jen-Chieh Peng.

“Neither the MINOS nor the Daya Bay disappearance results alone can be compared to the LSND appearance measurements,” Huang explains. “Looking at multiple types of neutrinos together gives us a much stronger handle on sterile neutrinos.”

The Daya Bay experiment looks at electron antineutrinos coming from a nuclear power plant in the Guangdong province of China. Daya Bay observed that some of these antineutrinos disappear and measured for the first time one of the parameters governing neutrino oscillations, a result garnering the 2016 Breakthrough Prize in Fundamental Physics. A sterile neutrino would affect the rate these electron antineutrinos disappear, but the Daya Bay scientists have seen no evidence for this.

The MINOS experiment uses an intense beam of muon neutrinos that travels 735 km from the Fermi National Accelerator Laboratory in Chicago to the Soudan Underground Laboratory in northern Minnesota. MINOS has made world-leading measurements to study how these neutrinos disappear as they travel between the two detectors. The existence of a sterile neutrino could cause some of these muon neutrinos to disappear at a faster rate than one would expect if sterile neutrinos do not exist. Scientists working on the MINOS experiment have shown that this does not happen

But these two results from MINOS and Daya Bay are not sufficient by themselves to address the puzzle that LSND set out almost twenty years ago.

“It’s not common for two major neutrino experiments to work together this closely,” comments Adam Aurisano of the University of Cincinnati Department of Physics. “But to really make a statement about the LSND evidence for sterile neutrinos, we must take Daya Bay’s electron-antineutrino data and the MINOS muon-neutrino data and put them both together into a single analysis.”

The result is a publication that very strongly excludes most of the possible sterile neutrino oscillation scenarios that could explain the LSND result. Both the MINOS and Daya Bay experiments are continuing to analyze additional data, and an even more sensitive search for the sterile neutrino is planned.

“It is difficult enough to detect ordinary neutrinos which hardly interact, and it is much more challenging to search for sterile neutrinos which may not exist,” concludes Peng. “And neutrinos may continue to surprise us in the future.”

Recent News

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.

  • Accolades

Professor Nigel Goldenfeld is the recipient of the 2017 Tau Beta Pi Daniel C. Drucker Eminent Faculty Award, conferred on faculty members who have received national or international acclaim for contributions to their fields through exemplary research and impactful teaching.

Asst. Professor Gregory MacDougall is a recipient of the 2017 Dean’s Award for Excellence in Research. This award is presented annually to recognize the best research to emerge from the U. of I. College of Engineering’s 15 academic units.

  • Events

The universe is an extraordinary place. At the cosmic scale, the universe expands, galaxies form and swirl around their centers, stars ignite into being and undergo fiery deaths, massive objects set off gravitational ripples in space-time.  At the microscopic scale, the laws of quantum physics defy imagination, atoms together form complex building blocks of matter, and under ultra-cold conditions, quantum states of matter exhibit beguiling emergent behavior.

In the project-based course Phys 498 Art, Where the Arts meet Physics, the class explored this extraordinary place under three umbrellas – the Universe, Fluids and Flow, and the Quantum World. You are warmly invited to experience the world they have created.

  • In the Media

SAVOY, ILL - Pulling a tablecloth off of a table filled with dishes or riding around on a fire-extinguisher powered scooter may not seem like activities that teach the fundamentals of science. However, one program that has existed in Central Illinois for nearly 25 years has been doing just that. The University of Illinois Physics Van program teaches students from Kindergarten through 6th grade all about science in a fun and interactive way. 

"The larger the word you use when explaining something you start to lose kids interest. You have to show things on a really life sized level." says Brian Korn, Coordinator of the Physics Van 

The Physics Van presents a variety of programs to students, including teaching the principals of electricity and the laws of gravity.