Under Construction: Distant Galaxy Churning Out Stars at Remarkable Rate

Megan Watzke, Chandra X-ray Center, Cambridge, Mass.
12/14/2016 11:35 AM

SPT0346-52, a galaxy found about a billion years after the Big Bang, has one of the highest rates of star formation ever seen in a galaxy. Astronomers discovered this stellar construction boom by combining data from Chandra and several other telescopes.   Image credit: X-ray: NASA/CXC/Univ of Florida/J.Ma et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech; Radio: ESO/NAOJ/NRAO/ALMA; Simulation: Simons Fdn./Moore Fdn./Flatiron Inst./Caltech/C. Hayward & P. Hopkins
SPT0346-52, a galaxy found about a billion years after the Big Bang, has one of the highest rates of star formation ever seen in a galaxy. Astronomers discovered this stellar construction boom by combining data from Chandra and several other telescopes. Image credit: X-ray: NASA/CXC/Univ of Florida/J.Ma et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech; Radio: ESO/NAOJ/NRAO/ALMA; Simulation: Simons Fdn./Moore Fdn./Flatiron Inst./Caltech/C. Hayward & P. Hopkins
Astronomers have used NASA's Chandra X-ray Observatory and other telescopes to show that a recently-discovered galaxy is undergoing an extraordinary boom of stellar construction. The galaxy is 12.7 billion light years from Earth, seen at a critical stage in the evolution of galaxies about a billion years after the Big Bang.

After astronomers discovered the galaxy, known as SPT 0346-52, with the National Science Foundation's South Pole Telescope (SPT), they observed it with several space and other ground-based telescopes. Data from the international Atacama Large Millimeter/submillimeter Array (ALMA) previously revealed extremely bright infrared emission, suggesting that the galaxy is undergoing a tremendous burst of star birth.

However, an alternative explanation remained: Was much of the infrared emission instead caused by a rapidly growing supermassive black hole at the galaxy's center? Gas falling towards the black hole would become much hotter and brighter, causing surrounding dust and gas to glow in infrared light. To explore this possibility, researchers used NASA’s Chandra X-ray Observatory and CSIRO’s Australia Telescope Compact Array, a radio telescope.

No X-rays or radio waves were detected, so astronomers were able to rule out a black hole being responsible for most of the bright infrared light.

"We now know that this galaxy doesn't have a gorging black hole, but instead is shining brightly with the light from newborn stars," said Jingzhe Ma of the University of Florida in Gainesville, Florida, who led the new study. "This gives us information about how galaxies and the stars within them evolve during some of the earliest times in the Universe."

Stars are forming at a rate of about 4,500 times the mass of the Sun every year in SPT0346-52, one of the highest rates seen in a galaxy. This is in contrast to a galaxy like the Milky Way that only forms about one solar mass of new stars per year.

"Astronomers call galaxies with lots of star formation 'starburst' galaxies," said co-author Anthony Gonzalez, also of the University of Florida. "That term doesn’t seem to do this galaxy justice, so we are calling it a 'hyper-starburst' galaxy."

The high rate of star formation implies that a large reservoir of cool gas in the galaxy is being converted into stars with unusually high efficiency.

Astronomers hope that by studying more galaxies like SPT0346-52 they will learn more about the formation and growth of massive galaxies and the supermassive black holes at their centers.

"For decades, astronomers have known that supermassive black holes and the stars in their host galaxies grow together," said co-author Joaquin Vieira of the University of Illinois at Urbana-Champaign. "Exactly why they do this is still a mystery. SPT0346-52 is interesting because we have observed an incredible burst of stars forming, and yet found no evidence for a growing supermassive black hole. We would really like to study this galaxy in greater detail and understand what triggered the star formation and how that affects the growth of the black hole."

SPT0346-52 is part of a population of strong gravitationally-lensed galaxies discovered with the SPT. SPT0346-52 appears about six times brighter than it would without gravitational lensing, which enables astronomers to see more details than would otherwise be possible.

A paper describing these results appears in a recent issue of The Astrophysical Journal and is available online. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Recent News

Assistant Professors Verena Martinez Outschoorn and Liang Yang of the Department of Physics at the University of Illinois at Urbana-Champaign have each been selected for 2017 NSF CAREER Awards. The Faculty Early Career Development (CAREER) Award of the National Science Foundation is conferred annually in support of junior faculty who exemplify the role of teacher-scholars by integrating outstanding research with excellent education. Receipt of this honor also reflects great promise for a lifetime of leadership within recipients’ respective fields.

Mason says, “there are so few of us, people get the impression that we are like unicorns – either non-existent or magical.” We are far from non-existent, but I find women of color to be quite magical. However, as Jesse Williams says, “Just because we’re magic, doesn’t mean we’re not real.”

  • Outreach

It’s up to you and your team to save the free world from evil forces plotting its destruction, and you have precisely 60 minutes to do it. You must find out what happened to Professor Schrödenberg, a University of Illinois physicist who disappeared after developing a top-secret quantum computer that can crack any digital-security encryption code in the world.  Unfortunately, the previous groups of special agents assigned to the case disappeared while investigating the very room in which you now find yourself locked up, Schrödenberg’s secret lab.

LabEscape is a new science-themed escape room now open at Lincoln Square Mall in Urbana, testing the puzzle-solving skills of groups of up to six participants at a time. Escape rooms, a new form of entertainment cropping up in cities across the U.S. and around the globe, provide in-person mystery-adventure experiences that have been compared to living out a video-game or movie script. A team of participants is presented with a storyline and locked into a room with only one hour to find and decipher a sequence of interactive puzzles that will unlock the door and complete the mission. Two escape room businesses are already in operation in the area, C-U Adventures in Time and Space in Urbana and Brainstorm Escapes in Champaign.

 

  • Research
  • AMO/Quantum Physics
  • Condensed Matter Physics

Topological insulators, an exciting, relatively new class of materials, are capable of carrying electricity along the edge of the surface, while the bulk of the material acts as an electrical insulator. Practical applications for these materials are still mostly a matter of theory, as scientists probe their microscopic properties to better understand the fundamental physics that govern their peculiar behavior.

Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state (the topological soliton state) of the topological insulator trans-polyacetylene. The transport properties of this organic polymer are typical of topological insulators and of the Su-Schrieffer-Heeger (SSH) model.

Physics graduate students Eric Meier and Fangzhao Alex An, working with Professor Bryce Gadway, developed a new experimental method, an engineered approach that allows the team to probe quantum transport phenomena.