New Theory Explains Nonlinear Stretching in Rubbery Materials


2/1/2007 12:00 AM

Professor of Physics Paul Goldbart, in collaboration with Xiangjun Xing (Syracuse) and Leo Radzihovsky (Colorado), has solved a theory problem that has puzzled physicists since the 1940s (Phys. Rev. Lett. 98, 075502 [2007]).

Measuring the force produced by stretching a rubber band to its limits is easy, but the standard theory of rubbery materials cannot predict this force.

When they are not stretched too much, rubbery materials act as simple springs, obeying Hooke's law. Thus, a 10-percent increase in stretching force will extend a typical rubber band 10 percent farther. But at greater stretching forces, that simple linear relation fails. The existence of the nonlinearity has long been known, but understanding its origins and developing a theory that correctly captures it "has been a challenge to the physics community for 60 years," said Goldbart.

By including the extra entropy associated with long length-scale motion while simultaneously coping with the essentially incompressible nature of rubbery materials, the researchers are now able to construct a theory that agrees with experiment, not only in the Hookean regime but also beyond—deep into the nonlinear regime. Read more...

Recent News

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.

  • Accolades

The Center for Advanced Study has appointed seven new members to its permanent faculty – one of the highest forms of academic recognition the University of Illinois campus makes for outstanding scholarship. The new CAS Professors are Antoinette Burton, history; Gary Dell, psychology; Eduardo Fradkin, physics; Martin Gruebele, chemistry; Sharon Hammes-Schiffer, chemistry; Harry Liebersohn, history; and Catherine Murphy, chemistry. They join 21 other CAS Professors with permanent appointments, and they will remain full members of their home departments while also serving on the annual selection committee for the CAS Associates and Fellows program.

  • In the Media
  • Biological Physics

A common bacteria is furthering evidence that evolution is not entirely a blind process, subject to random changes in the genes, but that environmental stressors can also play a role. A NASA-funded team is the first group to design a method demonstrating how transposongs-DNA sequences that move positions within a genome-jump from place to place. The researchers saw that the jumping rate of these transposons, aptly-named "jumping genes" increases or decreases depending on factors in the environment, such as food supply.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory
  • ICMT
  • Institute for Condensed Matter Theory

Researchers at the University of Illinois at Urbana-Champaign and Princeton University have theoretically predicted a new class of insulating phases of matter in crystalline materials, pinpointed where they might be found in nature, and in the process generalized the fundamental quantum theory of Berry phases in solid state systems. What’s more, these insulators generate electric quadrupole or octupole moments—which can be thought of roughly as very specific electric fields—that are quantized. Quantized observables are a gold standard in condensed matter research, because experimental results that measure these observables have to, in principle, exactly match theoretical predictions—leaving no wiggle room for doubt, even in highly complex systems.

The research, which is the combined effort of graduate student Wladimir Benalcazar and Associate Professor of Physics Taylor Hughes of the Institute for Condensed Matter Theory at the U. of I., and Professor of Physics B. Andrei Bernevig of Princeton, is published in the July 7, 2017 issue of the journal Science.