Welcome new faculty: Founder Professor Jun S. Song

Siv Schwink
2/6/2014 8:00 AM

Jun Song is a theoretical biological physicist with joint appointments in the Department of Physics and the Department of Bioengineering. His research program in computational biology and biomedicine leverages the methodologies and tools of physics and mathematics to discover how transcription factors, chromatin structure and non-coding RNAs regulate gene expression. Song is particularly interested in the genomic study of cancer. His ongoing research has implications for prognosis and treatment of cancer, in particular of malignant melanoma, one of the deadliest cancers.

“In my field of research, it’s easy now to produce 40 gigabytes of data from one experiment. Using DNA sequencing techniques, it’s possible to generate several terabytes of data just for one patient. I use statistical and mathematical tools to overcome the challenge of analyzing and integrating such large data sets.”

Song looks forward to collaborating with other theorists in both biophysics and physics at Illinois—access to quantitative theorists and the University’s growing strength in bioengineering are largely what drew him to Urbana.

“I am very happy to be here,” shares Song. “Being able to teach and recruit students who are trained in physics will allow me to develop diversity in my research program. That’s very attractive to me, and I like the interactive ‘Urbana style’ approach to collaborative research.”

Prior to joining the faculty at Illinois, Song held an appointment as associate professor in the Department of Epidemiology and Biostatistics and in the Department of Bioengineering and Therapeutic Sciences at the University of California at San Francisco, where he advised students within the biomedical sciences graduate group, the biological and medical informatics graduate group, and the developmental and stem cell biology graduate group.

Song joins the faculty at Illinois as a Founder Professor. His primary laboratory is at the Institute for Genomic Biology. He brought two postdocs with him from UCSF to Illinois. Tomas Rube joined Song’s lab in 2012. He earned his doctoral degree from Stanford University studying theoretical high energy physics and switched to the study of genomics after graduating. Miraslav Hejna received his doctoral degree from Princeton University, studying high energy and theoretical condensed matter physics. He joined Song’s lab in 2013.

A third postdoc appointment followed Song to Illinois: Courtney Onodera, who earned her doctoral degree in bioinformatics at the University of California at Santa Cruz, will finish her research under Song this academic year while remaining at UCSF.

Song has already attracted students to his lab who want to engage in interdisciplinary research. Given his own background, he is very interested in helping young quantitative scientists find their way into biology. Song also puts a high priority on teaching quantitative and computational approaches to students of biology.

“I believe Illinois can lead in this area of research, because it has a very strong presence in computational physics, physics, and biological physics,” comments Song.

Song plans to develop an educational program that crosses disciplines. He intends to take advantage of a teaching release this spring to develop new cross-listed courses that will teach state-of-the-art technologies and methodologies in computational genomics and computational biology.

“I hope to bring people together from different departments and disciplines, including mathematics, physics, statistics, and biology. I plan to introduce educational research projects for graduate students and upper-level undergraduate students.”

Song received his bachelor’s degree in physics from Harvard University in 1996, graduating summa cum laude, and went on to receive a master of advanced study degree in mathematics from the University of Cambridge in 1997, graduating with distinction. He received his doctoral degree in physics from the Massachusetts Institute of Technology in 2001 under thesis adviser Gang Tian of the Department of Mathematics.

Prior to his appointment at UCSF in 2009, Song held a position as a Charles B. Morrey, Jr. Assistant Professor of Mathematics at the University of California at Berkeley (2001–2003); held an appointment as instructor and research fellow in medical physics and as research fellow in biostatistics and computation biology at Harvard University (2003–2005); and was a member of the Institute for Advanced Study’s Simons Center for Systems Biology (2007–2009).

Song is the recipient of many honors, including a National Science Foundation CAREER Award (2011) and a Sontang Foundation Distinguished Scientist Award (2011). He was also awarded a National Science Foundation Fellowship (1997).

In addition to his academic research achievements attested by a long list of invited talks and a longer-still list of publications in peer-reviewed journals, Song has shown a strong commitment to service. Song served as an expert reviewer for the US-Israel Binational Science Foundation (2010-2014) and served as a review panel member of numerous NIH study sections.

Recent News

  • In the News
  • Condensed Matter Physics

The other half of the Nobel prize, awarded for “topological phase transitions,” also unites topology and physics, but “topology enters in a somewhat different way,” says Eduardo Fradkin, a physicist at the University of Illinois Urbana-Champaign. 

Relevant here is the fact that topological properties often cannot be determined locally. An ant sitting on a pastry can’t tell by looking around whether the perch is a bun, bagel, or pretzel.

  • Research

Do sterile neutrinos—hypothetical particles that do not interact with matter except through gravity—really exist? If so, this would solve some of today’s major mysteries in particle physics and cosmology. For two decades, researchers around the globe have sought evidence that would prove or disprove the reality of sterile neutrinos, with inconclusive outcomes.

Now, a new result has all but ruled out the possible existence of a light sterile neutrino in a regime suggested by an earlier experiment. Researchers from two major international collaborations—the Main Injector Neutrinos Oscillation Search (MINOS) at Fermi National Laboratory and the Daya Bay Reactor Neutrino Experiment in the south of China—joined forces, each contributing years of data that, taken together, paint a nearly complete picture. The joint result published in Physical Review Letters has significantly shrunk the hiding space for a light sterile neutrino.

  • Accolades

University of Illinois Professor of Physics and Astronomy Stuart Shapiro has been selected for the 2017 Hans A. Bethe Prize of the American Physical Society (APS). The Bethe Prize is conferred annually to a scholar who has made outstanding contributions to theory, experiment, or observation in astrophysics, nuclear physics, nuclear astrophysics, or closely related fields.

The citation reads, “For seminal and sustained contributions to understanding physical processes in compact object astrophysics, and advancing numerical relativity.”

  • Accolades

Celia Elliott, Physics Illinois’ director of external affairs and special projects, has received the 2016 SPaRC Career Achievement Award, for her significant and sustained contributions throughout her career to the field of research administration at the University of Illinois at Urbana-Champaign. The award was presented by the campus’s Sponsored Programs and Research Compliance group on Friday, September 16, 2016, during the SPaRC Retreat at the I-Hotel in Urbana.
Elliott is widely recognized among the department’s faculty as the pivotal resource for all things pertaining to successful grant writing and administration.