Cracking its whips:
coordination of flagellar locomotion in E. coli

Siv Schwink
2/12/2014 12:00 AM

Escherichia coli, a rod-shaped bacterium commonly found in the lower intestines of humans and other warm-blooded animals, varies widely in the number of flagella on the surface of any individual bacterial cell. Flagella—rotating whip-like structures driven by reversible motors— rotate in a counterclockwise direction to propel the bacterial cell in a swimming motion called “running”. When at least one flagellum moves in a clockwise direction, the cell begins to “tumble”, changing its directional course.

E. coli is able to control the time it spends swimming or tumbling to move towards a nutrient, such as glucose, or away from certain harmful chemicals. However, the details of how the number of flagella and the direction of rotation—clockwise or counterclockwise—influence the motion of the bacterium are not fully understood.

Now a research team led by biological physicists Yann Chemla at the University of Illinois and Ido Golding at Baylor College of Medicine has experimentally demonstrated that individual flagella on the same E. coli cell tend to move in a coordinated way, whether swimming or tumbling. The team used “optical tweezers” to immobilize individual E. coli cells under a microscope, enabling for the first time simultaneous tracking of both swimming behavior and flagellar motion for long durations.

Tumbling, the team observed, could be caused by a single flagellum stopping a run, but it often involves a concerted effort by many of the cell’s flagella. Based on their observation that E. coli cells with more flagella spend less time tumbling than would be predicted if a single flagella always “vetoed” a run, the team proposes a new mathematical relationship between the number of flagella on the cell, the direction of rotation, and the resulting probability that the cell will tumble.

Artist's conception of a swimming E. coli cell trapped in place by two optical traps: Next to the optical traps is a sequence of images showing fluorescently labeled flagella on a trapped cell. Below the traps is a representative data trace obtained from the optical traps. Image courtesy of Yann Chemla
Artist's conception of a swimming E. coli cell trapped in place by two optical traps: Next to the optical traps is a sequence of images showing fluorescently labeled flagella on a trapped cell. Below the traps is a representative data trace obtained from the optical traps. Image courtesy of Yann Chemla
This work shows that swimming behavior in bacteria is less affected by variations in the number of flagella than expected.

Chemla explains, “What we’ve found is that E. coli has developed a mechanism that makes it relatively insensitive to variations in flagellar number. A cell will run and tumble about the same regardless of how many flagella it has—which is a good thing. Otherwise cells with few flagella would run too much, and cells with many flagella would tumble too much.”

This phenomenon may provide evolutionary advantages to E. coli.

“These cells need to be swimming and tumbling at an optimal frequency to survive,” continues Chemla. “If it runs too much, it can move away from areas with lots of nutrients or toward areas that may be toxic with no mechanism to get out. If it tumbles too much, it can never go anywhere and can get stuck in a bad spot.”

In continuing research, the team plans to explore further the mechanism by which bacteria coordinate their flagella.

In the laboratory, E. coli chemotaxis—locomotion prompted by the presence of particular chemicals in the cell’s environment— is considered a model system for studying cellular decision-making. The signaling network inside the cell that causes it to run and tumble has been studied extensively, but it hasn’t been correlated directly to the cell’s swimming behavior.

“Understanding how the cells process information from their environment to pick alternate fates—like swimming vs. tumbling—is certainly a goal. How this decision-making feature evolved in a simple organism like E. coli could provide insights into decision-making in more complex organisms,” asserts Chemla.

The team's findings have been published in the online journal eLIFE.

link to article:

This work was supported by funding through an NSF Physics Frontier Center “Center for the Physics of Living Cells” Grant No. PHY-082265 (IG and YRC); NSF Grant No. PHY-1147498 (IG); NIH Grant No. R01 GM082837 (IG); NIH Grant No. R01 GM054365 (CVR); the Burroughs Wellcome Fund (YRC); the Welch Foundation Grant No Q-1759 (IG); and the Alfred P. Sloan Foundation (YRC). The conclusions presented are those of the scientists and not necessarily those of the funding agencies.

Recent News

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.

  • Accolades

The Center for Advanced Study has appointed seven new members to its permanent faculty – one of the highest forms of academic recognition the University of Illinois campus makes for outstanding scholarship. The new CAS Professors are Antoinette Burton, history; Gary Dell, psychology; Eduardo Fradkin, physics; Martin Gruebele, chemistry; Sharon Hammes-Schiffer, chemistry; Harry Liebersohn, history; and Catherine Murphy, chemistry. They join 21 other CAS Professors with permanent appointments, and they will remain full members of their home departments while also serving on the annual selection committee for the CAS Associates and Fellows program.

  • In the Media
  • Biological Physics

A common bacteria is furthering evidence that evolution is not entirely a blind process, subject to random changes in the genes, but that environmental stressors can also play a role. A NASA-funded team is the first group to design a method demonstrating how transposongs-DNA sequences that move positions within a genome-jump from place to place. The researchers saw that the jumping rate of these transposons, aptly-named "jumping genes" increases or decreases depending on factors in the environment, such as food supply.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory
  • ICMT
  • Institute for Condensed Matter Theory

Researchers at the University of Illinois at Urbana-Champaign and Princeton University have theoretically predicted a new class of insulating phases of matter in crystalline materials, pinpointed where they might be found in nature, and in the process generalized the fundamental quantum theory of Berry phases in solid state systems. What’s more, these insulators generate electric quadrupole or octupole moments—which can be thought of roughly as very specific electric fields—that are quantized. Quantized observables are a gold standard in condensed matter research, because experimental results that measure these observables have to, in principle, exactly match theoretical predictions—leaving no wiggle room for doubt, even in highly complex systems.

The research, which is the combined effort of graduate student Wladimir Benalcazar and Associate Professor of Physics Taylor Hughes of the Institute for Condensed Matter Theory at the U. of I., and Professor of Physics B. Andrei Bernevig of Princeton, is published in the July 7, 2017 issue of the journal Science.