U of I's Coursera offering brings Carl Woese's pioneering work in genomics to the public

Siv Schwink
6/27/2014 12:00 AM

The revolutionary work of the late University of Illinois microbiologist and biological physicist Carl Woese (July 15, 1928—December 30, 2012) shifted the foundations of genomic biology. His theory developed in the 1970s on the communal evolution of the genetic code forever changed our understanding of the earliest structure of life on Earth. And in 1977, Woese defined an entirely new kingdom of life, Archaea, through phylogenetic taxonomy of 16S ribosomal RNA, a technique he invented.

Woese’s work, despite being central to cutting-edge genome-enabled research across many fields, is not generally taught in classrooms or lecture halls. Now the NASA Astrobiology Institute for Universal Biology at the Institute for Genomic Biology on the University of Illinois campus, in partnership with Coursera, is offering a rare opportunity for anyone to explore and evaluate the entire history of life on Earth, based on Woese’s seminal research.

A massive open online course (MOOC) entitled Emergence of Life will run July 14 through September 7, 2014, and will be taught by Bruce Fouke, Illinois professor of biology, director of the Carver Biotech Center, and member of the Institute for Genomic Biology. It will feature previously unreleased interviews with Woese, as well as interviews with some of the most important figures in evolutionary biology today—Bruce Fouke, Swanlund Professor of Physics at Illinois Nigel Goldenfeld, University of Regensburg microbiologist and astrobiologist Karl Stetter, University of Colorado biochemist Norman Pace, and York University historian of biology Jan Sapp. It will also feature beautiful animated visualizations by the National Center for Supercomputing Applications’s eDream team.

To view the course trailer and to register for the course, please visit this link: http://go.illinois.edu/emergenceoflife.

Recent News

  • Research
  • Condensed Matter Physics

Physics professor Taylor Hughes and mechanical science and engineering professor Gaurav Bahl of the University of Illinois at Urbana-Champaign are part of an interdisciplinary team that will study non-reversible sound wave propagation over the next four years, with a range of promising potential applications.

The National Science Foundation has announced a $2-million research award to the team, which includes University of Oregon physics professor Hailin Wang and Duke University electrical and computer engineering professor Steven Cummer. The grant is part of a broader $18-million NSF-funded initiative, the Emerging Frontiers in Research and Innovation (EFRI) program, supporting nine teams—a total of 37 researchers at 17 institutions—to pursue fundamental research in the area of new light and acoustic wave propagation, known as NewLAW.

  • In the Media

Edward Seidel, director of the National Center for Supercomputing Applications, was named interim vice president for research to succeed Lawrence Schook, a biomedical researcher who announced last spring that he would step down after more than five years to return to his research. Seidel will assume office Sept. 1, pending approval from UI trustees.

  • Accolades

Andrea Young, a physics professor at the University of California, Santa Barbara, has been awarded the 2016 McMillan Award for outstanding contributions in condensed matter physics. Named in memory of physicist William McMillan of the University of Illinois at Urbana-Champaign, the award is presented annually for distinguished research performed within five years of receiving a Ph.D.

  • Research
  • Condensed Matter Physics

Experimenters have approximated the Leggett and Garg test. In 2011, White and colleagues demonstrated the extrastrong correlations in quantum optics, although in an average way and not with a single photon. Now, Joseph Formaggio, a neutrino physicist at the Massachusetts Institute of Technology in Cambridge, and colleagues provide a demonstration using data from the Main Injector Neutrino Oscillation Search (MINOS) experiment at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, which fires neutrinos at near-light-speed 735 kilometers to a 5.4-kiloton detector in the Soudan Mine in Minnesota.