News

  • Research
  • AMO Physics
  • Atomic, Molecular, and Optical Physics
  • Condensed Matter Physics

Now, two teams at the University of Illinois at Urbana Champaign, working together and attacking the problem from different physics disciplines, have shed new light on our understanding of disordered quantum materials. Professor Brian DeMarco and his group perform innovative experiments in atomic, molecular, and optical physics using ultracold atoms trapped in an optical lattice to simulate phenomena in solid materials. Professor David Ceperley and his group work in theoretical condensed matter physics; they perform supercomputing simulations to model phenomena in solid materials.

The two groups collaborated across physics disciplines to understand how disorder in a quantum material gives rise to an exotic quantum state called a Bose glass. The results are published in Nature Physics in the article, “Probing the Bose glass–superfluid transition using quantum quenches of disorder.”