Is it possible that any material object can show wave nature like electron?

Professor Ceperley received his BS in physics from the University of Michigan in 1971 and his Ph.D. in physics from Cornell University in 1976. After one year at the University of Paris and a second postdoc at Rutgers University, he worked as a staff scientist at both Lawrence Berkeley and Lawrence Livermore National Laboratories. In 1987, he joined the Department of Physics at Illinois. He was a staff scientist at the National Center for Supercomputing Applications from 1987 until 2012.

Professor Ceperley's work can be broadly classified into technical contributions to quantum Monte Carlo methods and contributions to our physical or formal understanding of quantum many-body systems. His most important contribution is his calculation of the energy of the electron gas, providing basic input for most numerical calculations of electronic structure. He was one of the pioneers in the development and application of path integral Monte Carlo methods for quantum systems at finite temperature, such as superfluid helium and hydrogen under extreme conditions.

Professor Ceperley is a Fellow of the American Physical Society and a member of the American Academy of Arts and Sciences. He was elected to the National Academy of Sciences in 2006.

* Electronic Structure of Condensed Matter*: The goals of our research are to develop computational methods for condensed matter starting from the fundamental many-body equations. The primary methods used are quantum Monte Carlo simulations, which can find exact properties of many-body systems, and density functional methods, which can be applied to diverse solids and liquids. We are combining these approaches to create new methods and to test the accuracy of calculations on materials. Current research includes studies of electron fluids, metalization of hydrogen at high pressure, simulations of solids and liquids as a function of temperature, and cold atom systems.

* Prediction of Macroscopic Properties of Liquid Helium from Computer Simulation*: This research is concerned with fundamental aspects of helium and quantum fluids in general; we are addressing outstanding problems in the current understanding of relevant phenomena such as Bose condensation, superfluidity, and phase transitions, as well as of theoretical issues such as the inference of bulk properties of matter from the study of finite clusters. The theoretical issues involved in helium systems are of direct relevance to understanding other many-body quantum systems such as correlated electronic systems.

- Member International Academy of Quantum Molecular Sciences (2013)
- Blue Waters Professor (2014)
- Center for Advanced Studies Professor (2009)
- Founder Professor of Engineering (2006)
- National Academy of Science (2005)
- Fellow, Institute of Physics (1999)
- Fellow, American Academy of Arts & Sciences (1999)
- Xerox Faculty Award (1990)
- Arnold O. Beckman Award, University of Illinois Center for Advanced Study, 1989
- NSF Graduate Fellowship (1971)

- Rahman Prize in Computational Physics of the American Physical Society (1998)
- Feenberg Medal (1994)
- Fellow of the American Physical Society (1990)

- J.T. Krogel, M. Yu, J.Kim, and D. M. Ceperley, The Quantum Energy Density: Improved Efficiency for quantum Monte Carlo Calculations. Phys. Rev. B 88, 035137 (2013).
- Miguel A. Morales, Raymond Clay, Carlo Pierleoni, and David M. Ceperley,First Principles Methods: A Perspective from Quantum Monte Carlo, Entropy 2014, 16(1), 287-321
- E. W. Brown, J. L. DuBois, M. Holzmann, and D. M. Ceperley, Exchange-correlation energy for the 3D homogeneous electron gas at arbitrary temperature, Phys. Rev. B 88, 081102 (2013).
- Miguel A. Morales, Jeffrey M. McMahon, Carlo Pierleoni, and David M. Ceperley, Towards a predictive first-principles description of solid molecular hydrogen with density functional theory, Phys. Rev. B 87, 184107 ( 2013).
- E. W. Brown, B. K. Clark, J. L. DuBois, D. M. Ceperley, Path Integral Monte Carlo Simulation of the Warm-Dense Homogeneous Electron Gas, Phys. Rev. Lett. 110, 146405 (2013)
- M. A. Morales, J. M. McMahon, C. Pierleoni and D. M. Ceperley, Nuclear quantum effects and nonlocal exchange-correlation functionals in liquid hydrogen at high pressure, Phys. Rev. Lett. 110, 065702 (2013).
- U. Ray and David M. Ceperley, Revealing the condensate and noncondensate distributions in the inhomogeneous Bose-Hubbard model. Phys. Rev. A 87, 051603 (2013).
- "Electronic energy functionals: Levy-Lieb principle within the ground state path integral quantum Monte Carlo" L Delle Site, L.M. Ghiringhelli, David Ceperley. Int. J. Quantum Chem. 113:2, 155-60 (2013) 10.1002/qua24321: 1-6 (2012).
- Jeffrey M. McMahon, Miguel A. Morales, Carlo Pierleoni, David M.Ceperley, David. The properties of hydrogen and helium under extreme conditions. Reviews of Modern Physics 84:4, 1607-1653 (2012).
- I. Kylanpaa, T. T. Rantala, David Ceperley. Few-body reference data for multicomponent formalisms: Light-nuclei molecule. Physical Review A (Atomic, Molecular, and Optical Physics), v 86, n 5, p 052506 (2012).
- Y. Kwon and D. M. Ceperley. 4He adsorption on a single graphene sheet: Path-integral Monte Carlo study. Phys. Rev. B 85, 224501-1-6 (2012).
- K. P. Esler, J. Kim, D. M. Ceperley, and L. Shulenburger. Accelerating quantum Monte Carlo simulations of real materials on GPU clusters. Comput. Sci. Eng. 14:1, 40-51 (2012).
- M. A. Morales, E. Schwegler, D. Ceperley, C. Pierleoni, S. Hamel, and K. Caspersen. Phase separation in hydrogenÃƒÂ¢Ã¢â€šÂ¬Ã¢â‚¬Å“helium mixtures at Mbar pressures. Proc. Nat. Acad. Sci.(USA) 106, 1324-1329 (2009).
- M. Holzmann, B. Bernu, V. Olevano, R. M. Martin, and D. M. Ceperley. Renormalization factor and effective mass of the two-dimensional electron gas, Phys. Rev. B 79, 041308(R) (2009).
- K. Delaney, C. Pierleoni, and D. M. Ceperley. Quantum Monte Carlo simulation of the high pressure molecular-atomic transition in fluid hydrogen. Phys. Rev. Lett. 97, 235702-1-4(2006).
- B. Clark and D. M. Ceperley. Off-diagonal long-range order in solid
^{4}He. Phys. Rev. Lett. 96,105302-1-4 (2006). - D. M. Ceperley and B. Bernu. Ring exchanges and the supersolid phase of
^{4}He. Phys. Rev. Lett. 93, 155303-1-4 (2004). - D. M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279-356 (1995).
- D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566-569 (1980).

**Office**

2107 Engineering Sciences Building

**Phone**

217.244.0646

**Fax**

217.244.7704

**Email**

ceperley@illinois.edu

© 2016 The Board of Trustees at the University of Illinois | Department of Physics | College of Engineering | University of Illinois at Urbana-Champaign

Department of Physics 1110 West Green Street Urbana, IL 61801-3080

Physics Library | Contact Us | My.Physics | Privacy Statement | Copyright Statement