A vacuum-tube diode is constructed out of two parallel conducting plates that are separated by a uniform spacing d which is much smaller than the dimensions of the plates so that edge effects can be ignored. The cathode at $x = 0$ is grounded, and hence at potential $\Phi(0) = 0$. The anode at $x = d$ is maintained at a fixed positive potential $\Phi(d) = \Phi_0$.

Assume that electrons (mass m, charge $q = -e$) are liberated at rest ($v = 0$) at the cathode, and are then accelerated toward the anode where they are absorbed. The charge density $\rho(x)$ and the x component $v(x)$ of the electron velocity do not depend on y or z. The system is in a steady state.

a) Show that that the current density J between the plates does not depend on x.

b) Use one of Maxwell’s equations to show that in the region between the plates

$$\frac{d^2 \Phi}{dx^2} = K\Phi(x)^{-1/2},$$

where K is a dimensionful constant depending on J, m, e, and ϵ_0 that you should find.

c) Show that you can integrate the equation in part (b) to obtain

$$\frac{d\Phi}{dx} = K'\Phi(x)^{1/4},$$

where K' is another constant that you should find.

d) Solve the equation in part (c) so as to find the x dependence of $\Phi(x)$, and hence that of $\rho(x)$ and $v(x)$.

e) Find an expression for the magnitude of the current density J in terms of Φ_0, d and other constants.