Wolfe honored with Klemens Award

Celia Elliott

Professor of Physics Emeritus James P. Wolfe was presented with the 2010 Klemens Award at the 13th International Conference on Phonon Scattering in Condensed Matter on April 23, 2010. The conference was held at National Taiwan University, Taipei, Taiwan. 

Wolfe was recognized for his seminal contributions to many branches of phonon physics and his efforts in presenting and explaining new discoveries to the phonon community. He is an internationally recognized expert on the imaging and thermodynamics of excitonic matter in semiconductors.

"We admire his investigation of wind in a phonon gas, his fantastic images of phonon focusing, the many experiments with surface waves and with superlattices, and his important contributions to the phonon physics involved in dark matter detection," according to Conference Chair Chi-Kuang Sun. "His lectures and book have set the highest standard of pedagogy.  We thank him for these past accomplishments and look forward to his future contributions."

Wolfe received his PhD in physics from the University of California, Berkeley, in 1971. He remained at Berkeley as an assistant research physicist until 1976, when he joined the Department of Physics at the University of Illinois. His 1998 book, Phonon Imaging, describes the propagation of phonons and ultrasound in solids. A Fellow in the American Physical Society, Professor Wolfe has headed multi-investigator programs for the Department of Energy and the National Science Foundation. He was awarded the 2004 Frank Isakson Prize for Optical Effects in Solids of the American Physical Society "for contributions to the fundamental understanding of excitonic matter and ballistic phonons in semiconductors, made possible by pioneering development of graphic imaging techniques."

Wolfe has also written the book Elements of Thermal Physics, which is used in our Physics 213 course for science and engineering students.

Recent News

  • Research

An international team of researchers led by Paul Scherrer Institute postdoctoral researcher Niels Schröter now provide an important benchmark for how "strong" topological phenonena can be in a real material. Writing in Science, the team reports experiments in which they observed that, in the topological semimetal palladium gallium (PdGa), one of the most common classifiers of topological phenomena, the Chern number, can reach the maximum value that is allowed in any metallic crystal. That this is possible in a real material has never been shown before. Moreover, the team has established ways to control the sign of the Chern number, which might bring new opportunities for exploring, and exploiting, topological phenomena. Illinois Physics Professor Barry Bradlyn contributed to the theoretical work elucidating the team's experiments.

At the European Organization for Nuclear Research (CERN), over 200 physicists across dozens of institutions are collaborating on a project called COMPASS. This experiment (short for Common Muon and Proton Apparatus for Structure and Spectroscopy) uses CERN’s Super Proton Synchrotron to tear apart protons with a particle beam, allowing researchers to see the subatomic quarks and gluons that make up these building blocks of the universe. But particle beams aren’t the only futuretech in play – the experiments are also enabled by a heavy dose of supercomputing power.

New findings from physicists at the University of Illinois, in collaboration with researchers at The University of Tokyo and others, clarify the physics of coupling topological materials with simple, conventional superconductors.

Through a novel method they devised to fabricate bulk insulating topological insulator (TI) films on superconductor (SC) substrates, the researchers were able to more precisely test the proximity effect, or coupling when two materials contact one another, between TIs and SCs. They found that when the TI film is bulk insulating, no superconductivity is observed at the top surface, but if it is a metal, as in prior work, strong, long-range superconducting order is seen. The experimental efforts were led by physics Professor Tai-Chang Chiang and Joseph Andrew Hlevyack, postdoctoral researcher in Professor Chiang’s group, in collaboration with Professor James N. Eckstein’s group including Yang Bai, Professor Kozo Okazaki’s Lab at The U. of Tokyo, and five other institutes internationally. The findings are published in Physical Review Letters, which has been highlighted as a PRL Editors’ Suggestion.

  • Accolades

Illinois Physics Assistant Professor Barry Bradlyn has been selected for a 2020 National Science Foundation CAREER (Faculty Early Career Development) Award. This award is conferred annually in support of junior faculty who excel in the role of teacher-scholars by integrating outstanding research programs with excellent educational programs. Receipt of this award also reflects great promise for a lifetime of leadership within the recipients’ respective fields.

Bradlyn is a theoretical condensed matter physicist whose work studying the novel quantum properties inherent in topological insulators and topological semimetals has already shed new light on these extraordinary systems. Among his contributions, he developed a real-space formulation of topological band theory, allowing for the prediction of many new topological insulators and semimetals.