World's fastest quantum random-number generator

Celia Elliott

Ever since humans discovered gambling, people have sought improved means of generating random numbers—unpredictable outcomes based on a physical process such as coin flipping, dice throwing, or wheel spinning. But such methods are both too slow and too unreliable for modern applications requiring random numbers.

Now physicists at the University of Illinois at Urbana-Champaign have developed a novel method to generate random numbers at record speeds and security, using the laws of quantum mechanics. The new scheme, based on shaping the photon flux from a laser diode and then digitizing the time interval between random photon arrivals, is a factor of 10 faster than any other quantum random number generator reported so far, according to Bardeen Professor of Physics and of Electrical and Computer Engineering Paul G. Kwiat. The group’s results were published in Optics Express in April.

Random number generators are essential for a variety of applications, including data encryption, statistical analysis, and advanced numerical simulations. However, because of limitations in reading out truly random physical processes, many current applications employ a pseudo-random number generator—a deterministic method that replicates the behavior of a physical phenomenon that is expected to be random or a computational algorithm based on a shorter initial value, known as a “seed” or a “key.”

But some applications, such as quantum cryptography, require absolute randomness to ensure security. Explains Michael Wayne, who developed the new method as part of his graduate research in Electrical and Computing Engineering, “Most random number generators are not actually random, they are just so complex that the computational cost required to predict their outcome is too large for modern computers. As technology advances, this is no longer the case, and previously secure systems can be compromised.” Because quantum physics is intrinsically random, scientists have increasingly turned to quantum systems as a source of random data.

Quantum optics, the behavior of individual “particles” of light, called photons, has proven to be particularly amenable to generating and reading out the random binary numbers of great interest for secure information processing, encryption, and transmission. Most existing quantum random number generators rely on measuring the behavior of an incoming photon at a beam-splitter to create data. This approach has significant limitations, however, in that each photon can produce at most one bit of data, and the systems are heavily constrained by the rate at which single-photon detectors can operate.

The method developed by Kwiat’s group produces a fast quantum random number generator having reduced bias and requiring less post-processing. “Unlike existing methods, our method creates multiple random bits per detection event and greatly reduces the need for post-processing,” said Kwiat. “We are able to obtain fast, secure quantum random number generation at rates exceeding 100 Mbit/s. Even faster rates—exceeding 10 Gbit/s—may be possible with planned improvements to our laser driver circuit and detectors.”

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.