Gammie selected for 2015 Simons Fellowship

Siv Schwink
3/17/2015

U. of I. Professor of Physics and Astronomy Charles Gammie
U. of I. Professor of Physics and Astronomy Charles Gammie
Professor Charles Gammie has been named a 2015 Simons Fellow in Theoretical Physics by the Simons Foundation.

Gammie, who has joint appointments in astronomy and physics at the University of Illinois at Urbana-Champaign, will use the fellowship to continue his leading-edge theoretical work in black hole astrophysics, while on sabbatical next academic year at the University of Oxford in the United Kingdom. While abroad, Gammie will also enjoy an appointment as a visiting fellow at All Souls College in Oxford, for the fall (Michaelmas) term. 

A major thrust of Gammie’s theoretical work at the U. of I. is investigating the gravitational field of black holes, particularly in the unexplored strong field regime near the black hole event horizon, and using that to test general relativity, one of the fundamental theories of physics.

A related research focus for Gammie is exploring the physics that govern black hole accretions. Accreting black holes are among the most luminous objects in the universe; the radiation from supermassive accreting black holes at galactic centers can outshine their entire host galaxies. Accretion disks can also affect the evolution of a galaxy. Specifically, Gammie’s team was the first to develop fully relativistic fluid models of the luminous hot plasma that surrounds black holes, elucidating emission properties of hot plasmas, and developing techniques for relativistic radiative transport that can be used to simulate observations, including inclination, spin, and accretion rate of the black hole.

Gammie’s group at the U. of I. has been active in laying the theoretical groundwork for the North American Event Horizon Telescope and the European Black Hole Cam collaborations (EHT/BHC). These collaborations are working together to create an expanded network of millimeter-wavelength telescopes that, by 2017, may provide the first-ever high-contrast image of the silhouette of the supermassive black hole at the center of the Milky Way galaxy.

Gammie’s team is currently developing new models for Sgr A* at the center of the Milky Way galaxy, known to contain the supermassive black hole. The new models take into account the physical processes present in hot, dilute (collisionless) plasmas: heat conduction, viscosity, and decoupling of the temperatures of the plasma’s constituent ions and electrons.

Because dissipative relativistic fluid theories that incorporate these effects are impossible to solve with existing numerical methods, his team is devising novel numerical techniques to solve them. Existing models also fail to account for modification of the flow by its own radiation field, a negligible effect in Sgr A* that is nonetheless important for the only other black hole candidate—in the nucleus of the galaxy M87—that will be resolved by EHT/BHC. This year, his team will complete the first models that self-consistently (relativistically) incorporate radiative effects.

While on sabbatical next year, Gammie will explore problems motivated by his teams new models of Sgr A*. Gammie is looking forward to the rich intellectual environment and new collaborations this opportunity will afford:

“Oxford has an excellent astrophysics program—one of the best in Europe—and lots of good people working in my areas of interest. I'm particularly excited about working with an old mentor of mine, Steven Balbus, who is now Savilian Professor at Oxford. I'm also excited about talking to people at Oxford who observe black hole candidates, as well as those who work in plasma astrophysics. All Souls is a postgraduate college that is focused entirely on research, and I'm told it provides a wonderful, interesting community of scholars to visiting faculty," he shares.

 

The Simons Foundation is a private foundation based in New York City, incorporated in 1994 by Jim and Marilyn Simons, with the mission of advancing the frontiers of research in mathematics and the basic sciences. The Simons Foundation Mathematics and Physical Sciences (MPS) division supports leading research efforts in mathematics, theoretical physics and theoretical computer science.

 

 

Recent News

  • Diversity

The Department of Physics at the University of Illinois at Urbana-Champaign strongly rejects all hateful acts of antisemitism, racism, and discrimination on campus and elsewhere. As scientists, we recognize that acts of intolerance not only create a climate of intimidation and fear, but also stifle both scientific education and scientific progress. Research consistently suggests that as diversity increases, so do productivity, creativity, and innovation in human endeavors. As a department, we are committed to supporting a diverse and inclusive community at this university. We recognize that it is our responsibility to use our privilege as scientists and academics to create and defend an environment where people of all races, religions, ethnicities, genders, and sexual orientations are treated with respect and dignity, and where their contributions are welcomed and encouraged.

  • Research

The rich complexity of turbulence—with its wide range of length and time scales—poses a major challenge to the development of predictive models based on fluid dynamics. Now, four leading physicists will co-lead an international effort to develop a statistical theory of turbulence. If successful, a statistical theory of turbulence would have broad applications, including in aeronautics, geophysics and astrophysics, medicine, and in the efficient transport of fluids through pipelines. Funded by the Simons Foundation, the research project titled “Revisiting the Turbulence Problem Using Statistical Mechanics” will bring together an international team from the US, UK, France, Austria, and Israel to apply novel techniques in non-equilibrium statistical physics to the unresolved problem. University of Illinois at Urbana-Champaign Physics Professor Nigel Goldenfeld is a lead PI on the project.

  • Events
  • Quantum Information Science

Top experts in quantum technology from around the globe will gather at the University of Chicago on Oct. 25 to discuss the future of quantum information science and strategies to build a quantum workforce.

The second annual Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, will engage scientific and government leaders and the industries that will drive the applications of emerging quantum information science. Speakers include technology leaders at IBM, Intel, Boeing, Applied Materials, Toshiba Research Europe, the University of Waterloo, and the University of New South Wales, Australia, and the Quantum Economic Development Consortium.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted the fingerprint of an elusive particle: The axion—first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics. Based on predictions from Illinois Physics Professor Barry Bradlyn and Princeton Physics Professor Andrei Bernevig's group, the group of Chemical Physics Professor Claudia Felser at Max Planck in Dresden produced the charge density wave Weyl metalloid (TaSe4)2I and investigated the electrical conduction in this material under the influence of electric and magnetic fields. It was found that the electric current in this material below -11 °C is actually carried by axion particles.