Taylor Hughes selected for 2015 Young Investigator Program

Siv Schwink

Assistant Professor Taylor Hughes
Assistant Professor Taylor Hughes
Assistant Professor Taylor Hughes has been selected for the 2015 Young Investigator Program of the Office of Naval Research (ONR), one of the oldest and most selective scientific research advancement programs in the country. Hughes is among 36 early-career university faculty selected for the program this year from across the nation. Each will receive annual monetary awards over a three-year period for research efforts that hold promise for advancing naval technologies.

Hughes will use the award, which extends his previous ONR funded research, to explore new classes of electronic materials including crystalline topological insulators (TCIs) and topological semi-metals (TSMs), with interactions. Both of these classes of materials are expected to exhibit remarkable properties, some of which are yet to be predicted.

Both TCIs and TSMs rely on the presence of certain spatial crystalline symmetries for robustness. Hughes’s work will study the materials’ electromagnetic response properties, sensitivity to strain, disorder, and electron interactions, and the properties of topological bound states localized on crystalline defects. The ultimate goal of this research program is to discover new unconventional topological phases of matter and to exploit the materials’ electromagnetic response properties that might provide a portfolio of capabilities not found in conventional materials.

“Topological materials have electromagnetic properties that are advantageous for real-world applications,” explains Hughes, “including possible room-temperature operation, robustness against imperfections and disorder, and ease of growth/processing, while also supporting exotic fundamental physical phenomena. TCIs and TSMs are the next wave of materials—they hold a lot of promise for further theoretical and experimental breakthroughs, especially when the effects of strong electron correlations are considered. The likelihood of finding interesting physics in these materials is almost assured, and the potential for device applications is immense.”

This work has implications for possible applications in electronic devices, superconductivity, and quantum computing.

Hughes is a recipient of numerous honors. He received a 2014 CAREER Award from the National Science Foundation, the 2014 Dean’s Award for Excellence in Research from the College of Engineering at the University of Illinois at Urbana-Champaign, and of a 2013 Sloan Research Fellowship from the Alfred P. Sloan Foundation. He is a member of the Institute of Condensed Matter Theory and of the US Department of Energy’s Quantum Materials at the Nanoscale research effort headquartered at the Frederick Seitz Materials Research Laboratory, both at the University of Illinois at Urbana-Champaign.

Hughes received his bachelor’s degrees in physics and mathematics from the University of Florida in 2003, graduating summa cum laude. He then worked for a year as a software engineer for the Department of Defense. He went on to receive his doctoral degree from Stanford University in 2009, working under Shou-Cheng Zhang.

Hughes completed a postdoctoral appointment at Physics Illinois and the Institute for Condensed Matter Theory (2009-2011), working under Professor Eduardo Fradkin. He joined the faculty at Physics Illinois in 2011.

The Young Investigator Program, administered by the Office of Naval Research, is designed to promote the professional development of early-career academic scientists, both as researchers and instructors. Candidates are selected based on merit and potential breakthrough advances for the Navy and Marine Corps. Since its inception in 1985, the program has supported research that led to breakthroughs in nanoscience, fiber-laser systems, ultrafast optoelectronic devices, and more. All told, this year’s awardees will receive $18.8 million in grants, which represents a 50 percent increase over last year’s program funding.

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.