First images of collisions at 13 TeV: LHC upgrades boost the search for new physics at Illinois and around the globe

5/22/2015 Siv Schwink

On the night of May 21, 2015, at CERN in Switzerland, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors from particles that stray from the edges of the beam.

 

Illinois high-energy physicist Mark Neubauer comments, “While these were test collisions to help commission critical systems at the Large Hadron Collider (LHC), it was the first time that proton-proton collisions have been achieved at this energy. This important milestone sets the stage for a physics run in early June that will be the beginning of a journey at this unprecedented energy to discover new physics beyond the standard model.

"Possible discoveries include observations of new particles or symmetries, elucidation of the nature of dark matter, a deeper understanding of the origin of particle masses, or unexpected new phenomena in the spirit of exploration in fundamental physics.”

Written by Siv Schwink

Professor Steven Errede
Professor Steven Errede
Assoc. Professor Mark Neubauer
Assoc. Professor Mark Neubauer
Asst. Professor Verena Martinez Outschoorn
Asst. Professor Verena Martinez Outschoorn
Illinois Physics Professor Benjamin Hooberman
Illinois Physics Professor Benjamin Hooberman

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the night of May 21, 2015, at CERN in Switzerland, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors from particles that stray from the edges of the beam.

More testing will be required before data taking can begin for the experimental teams running the detectors, including ALICE, ATLAS, CMS, LHCb, LHCf, MOEDAL and TOTEM. to switch on their experiments fully. Data taking and the start of the LHC's second run is planned for early June.

Illinois high-energy physicist Mark Neubauer comments, “While these were test collisions to help commission critical systems at the Large Hadron Collider (LHC), it was the first time that proton-proton collisions have been achieved at this energy. This important milestone sets the stage for a physics run in early June that will be the beginning of a journey at this unprecedented energy to discover new physics beyond the standard model.

"Possible discoveries include observations of new particles or symmetries, elucidation of the nature of dark matter, a deeper understanding of the origin of particle masses, or unexpected new phenomena in the spirit of exploration in fundamental physics.”

There are 34 people at Physics Illinois working in the ATLAS experiment. These include postdocs, students, and technicians who work under four professors, including Neubauer, Steve Errede, Benjamin Hooberman, and Verena Martinez Outschoorn.

See the images on the CERN website here:  http://home.web.cern.ch/about/updates/2015/05/first-images-collisions-13-tev



Share this story

This story was published May 22, 2015.