Ultrafast imaging of electron waves in graphene

Celia Elliott
11/5/2010

The fastest movies ever made of electron motion, created by scattering x-rays off of graphene, have shown that the interaction among its electrons is surprisingly weak.

Graphene is a single atomic layer of carbon whose unusual electronic structure makes it a candidate for a new generation of low-cost, flexible electronics. A major outstanding question is whether the electrons in graphene move independently, or if their motion is correlated by Coulomb repulsion.

Using advanced x-ray scattering techniques, physicists in Peter Abbamonte’s group at the University of Illinois at Urbana-Champaign have imaged the motion of electrons in graphene with resolutions of 0.533 Å and 10.3 attoseconds. Their results were published on November 5 in Science.

Exactly how small and how fast are these measurements? An angstrom is 1/10,000,000,000 of a meter, about the width of a hydrogen atom. And an attosecond is to a second as a second is to the age of the universe.

The researchers found that graphene screens Coulomb interactions surprisingly effectively, causing it to act like a simple, independent-electron semimetal. Their work explains several mysteries, including why freestanding graphene fails to become an insulator as predicted. The study also demonstrates a new approach to studying ultrafast dynamics, creating a new window on the most fundamental properties of materials.

The experiments were carried out at the Frederick Seitz Materials Research Laboratory at the University of Illinois and the Advanced Photon Source at Argonne National Laboratory.

Recent News

As acting president of Ginling College, Minnie Vautrin (Illinois class of 1912) sheltered more than 10,000 Chinese women from rape and deadly violence during the Nanjing Massacre. The Program in Arms Control & Domestic and International Security (ACDIS) at Illinois will host a symposium recalling the history of the Sino-Japanese war and honoring Vautrin. The Forgotten Holocaust of World War II: The Massacre of Nanjing will be held on December 16, 2017, at the Levis Faculty Center, Room 300, 919 West Illinois Street, Urbana.

  • Research
  • Condensed Matter Physics

Excitonium has a team of researchers at the University of Illinois at Urbana-Champaign… well… excited! Professor of Physics Peter Abbamonte and graduate students Anshul Kogar and Mindy Rak, with input from colleagues at Illinois, University of California, Berkeley, and University of Amsterdam, have proven the existence of this enigmatic new form of matter, which has perplexed scientists since it was first theorized almost 50 years ago.

The team studied non-doped crystals of the oft-analyzed transition metal dichalcogenide titanium diselenide (1T-TiSe2) and reproduced their surprising results five times on different cleaved crystals. University of Amsterdam Professor of Physics Jasper van Wezel provided crucial theoretical interpretation of the experimental results.

  • In the Media
  • Our History

In 1950, the physicist Arnold Nordsieck built himself this analog computer. Nordsieck, then at the University of Illinois, had earned his Ph.D. at the University of California, Berkeley, under Robert Oppenheimer. To make his analog computer for calculating differential equations, the inventive and budget-conscious Nordsieck relied on US $700 worth of military surplus parts, particularly synchros—specialized motors that translate the position of the shaft into an electrical signal, and vice versa.