Straight up, with a twist: new model derives homochirality from the basic requirements for life

Claudia Lutz, Carl R. Woese Institute for Genomic Biology
10/13/2015 12:00 AM

A mathematical model developed by a group of physicists at the University of Illinois suggests that homochirality can be used as a universal biosignature

University of Illinois Swanlund Professor of Physics Nigel Goldenfeld
University of Illinois Swanlund Professor of Physics Nigel Goldenfeld
Life is quirky. Although the molecules that make up all living things obey physical and chemical laws, they do so with a puzzling twist. How did the distinctive molecular features of life emerge, and what can they tell us about life on Earth and elsewhere in the universe?

University of Illinois Swanlund Professor of Physics Nigel Goldenfeld, graduate student Farshid Jafarpour, and postdoctoral researcher Tommaso Biancalani have made a breakthrough in one of the most central chemical quirks of life as we know it: homochirality, the uniform “handedness” of biological molecules. Their new model addressing the emergence of this feature, published in Physical Review Letters (doi: 10.1103/PhysRevLett.115.158101) and highlighted by Physics suggests that homochirality can be used as a universal signature of life.

All three researchers are members of the Biocomplexity research theme within the Carl R. Woese Institute for Genomic Biology (IGB), and performed their work with funding from the NASA Astrobiology Institute for Universal Biology at UIUC, which Goldenfeld directs.

Many chemicals, organic or otherwise, are chiral; that is, if the structure of each was reflected in a mirror, its “looking-glass” copy could not be turned or flipped to match the original. Like a pair of gloves, the left-handed and right-handed versions of a chiral molecule are functionally equivalent, but their fundamental asymmetry makes them distinct.

Inorganic reactions produce and consume both versions of chiral molecules at equal rates. This is what makes the chirality of biological molecules, such as sugars produced by microbes and plants or the amino acids that make up proteins, so shocking. In every living thing on Earth, all amino acids are left-handed, and all sugars are right-handed. Goldenfeld highlighted the central mystery of this phenomenon.

Computer simulation of the emergence of homochirality.  The vertical axis represents space, here in only one dimension for simplicity, while the horizontal axis is time.  The colors represent the degree of chirality, with red being (e.g.) right and blue being (e.g.) left.  At the beginning the mixture has equal numbers of right and left-handed molecules, and during the time evolution, the red and blue phases compete over the spatial domain, resulting in the eventual dominance of the blue chiral phase. Image courtesy of Nigel Goldenfeld, University of Illinois at Urbana-Champaign
Computer simulation of the emergence of homochirality. The vertical axis represents space, here in only one dimension for simplicity, while the horizontal axis is time. The colors represent the degree of chirality, with red being (e.g.) right and blue being (e.g.) left. At the beginning the mixture has equal numbers of right and left-handed molecules, and during the time evolution, the red and blue phases compete over the spatial domain, resulting in the eventual dominance of the blue chiral phase. Image courtesy of Nigel Goldenfeld, University of Illinois at Urbana-Champaign
“Imagine you've got a coin, and it's perfectly made, so it's not biased at all, and you start flipping the coin. Each time you flip it, it keeps coming up heads,” he said. “So then you say, something must be operating that's causing this to happen . . . you get the same puzzle with these biological molecules, and that's the problem of homochirality.”

Many scientists have proposed hypotheses for how this remarkable asymmetry became dominant. Perhaps the most prominent, put forward by noted physicist Sir Charles Frank in 1953, argued that homochirality could be produced by one of the fundamental properties of life—autocatalysis, the ability to self-replicate. He argued that in a system where one left-handed or right-handed molecule begets more like itself, and each type inhibits the self-replication of the other, an initial unevenness in the ratio, appearing by chance, would ultimately allow one handedness to completely outcompete the other.

Frank’s work was ground-breaking, but it left unanswered questions that no subsequent work has adequately addressed. His idea appeared to rely on the inhibition of self-replication of each chirality by the other, a mechanism that might not have existed early on in life’s history.

The Illinois team wanted to develop a simpler model, one based on only the most basic properties of life: self-replication and disequilibrium. They showed that with only these minimal requirements, homochirality appears when self-replication is efficient enough.

“There are other models, and they may be correct for the origin of homochirality on earth, if you can prove that those prerequisites existed during the emergence of life,” said Jafarpour. “But whether those foundations exist or not, for life that emerged anywhere in the universe, you'd expect that it would have self-replication, and our model says that's enough to get homochirality.”

The model relies on mathematical and computational techniques that were not available in Frank’s time. It takes into account the chance events involving individual molecules—which chiral self-replicator happens to find its next substrate first. The detailed statistics built into the model reveal that if self-replication is occurring efficiently enough, this incidental advantage can grow into dominance of one chirality over the other. The forerunner of this mathematical mechanism came from Biancalani’s previous work on how chance events influence the foraging patterns of ant colonies.

Goldenfeld attributes part of their success to the interdisciplinary environment of the IGB and of the Institute for Universal Biology (IUB), a member of the NASA Astrobiology Institute. “If we hadn't been in this environment, we wouldn't have been so prepared to think about this problem; we might have just stuck with ants, and never made the jump to realizing that we can apply this to this origin of life problem,” he said.

The work leads to a key conclusion: since homochirality depends only on the basic principles of life, it is expected to appear wherever life emerges, regardless of the surrounding conditions.

“For me, the most exciting thing is that this mechanism shows that homochirality is really a biosignature of life, a 100% signature, and should be expected anywhere life emerges,” said Goldenfeld. “So for example, we just learned that there is a global ocean of liquid water under the ice of Enceladus . . . I think that looking for homochirality in the organic molecules that have been detected there would be a fantastic way to look for life there.”

Recent News

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

  • Research

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

  • Research
  • Condensed Matter Physics

Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.