DNA molecules directly interact with each other based on sequence

Liz Ahlberg, Illinois News Bureau
3/23/2016

Illinois postdoctoral researcher Jejoong Yoo, left, and professor Aleksei Aksimentiev found that molecules of DNA directly interact with each other based on their sequences. Photo by L. Brian Stauffer
Illinois postdoctoral researcher Jejoong Yoo, left, and professor Aleksei Aksimentiev found that molecules of DNA directly interact with each other based on their sequences. Photo by L. Brian Stauffer
Proteins play a large role in DNA regulation, but a new study finds that DNA molecules directly interact with one another in a way that's dependent on the sequence of the DNA and epigenetic factors. This could have implications for how DNA is organized in the cell and even how genes are regulated in different cell types, the researchers say.

Led by Aleksei Aksimentiev, a professor of physics at the University of Illinois, and Taekjip Ha, a professor of biophysics and biophysical chemistry at Johns Hopkins University and an adjunct at the University of Illinois Center for the Physics of Living Cells along with Aksimentiev, the researchers published their work in the journal Nature Communications.

"We are still only starting to explore the physical properties of DNA. It's not just a string of letters," Aksimentiev said. "It's a complex molecule with unique characteristics. The prevailing hypothesis is that everything that happens inside the nucleus, the way the DNA is organized, is all the work of proteins. What we show is that direct DNA-DNA interactions may play a role in large-scale chromosome organization as well."

Using the Blue Waters supercomputer at the National Center for Supercomputing Applications on the Illinois campus, Aksimentiev and postdoctoral researcher Jejoong Yoo performed detailed simulations of two DNA molecules interacting in a charged solution such as is found in the cell. The supercomputer allowed them to map each individual atom and its behavior, and to measure the forces between the molecules. They found that, though DNA molecules tend to repel each other in water, in a cell-like environment two DNA molecules can interact according to their respective sequences.

"In the DNA alphabet, there is A, T, G and C. We found that when a sequence is rich in A and T, there is a stronger attraction," Aksimentiev said. "Then we looked at what actually causes it at the molecular level. We like to think of DNA as a nice symmetrical helix, but actually there's a line of bumps which are methyl groups, which we find are the key to regulating this sequence-dependent attraction."

One of the processes for regulating gene expression is methylation, which adds methyl groups to the DNA helix. In further simulations, the researchers found that the methyl groups strengthen the attraction, so sequences heavy in G and C with methyl groups attached will interact just as strongly as sequences rich in A and T.

"The key is the presence of charged particles in the solution," Aksimentiev said. "Let's say you have two people who don't like each other, but I like them both, so I can shake hands with both of them and bring them close. The counter-ions work exactly like that. The strength of how they pull the DNA molecules together depends on how many of them are between the molecules. When we have these bumps, we have a lot of counter-ions."

Ha and graduate researcher Hajin Kim experimentally verified the findings of the simulations. Using advanced single-molecule imaging techniques, they isolated two DNA molecules inside a tiny bubble, then watched to see how the molecules interacted. The experiments matched well with the data from the simulations, both for the sequence-dependent interactions and for interactions between methylated DNA.

"It was wonderful to see the computational predictions borne out exactly in our experiments," Ha said. "It tells us how accurate the atomic-level simulations are and shows that they can guide new research avenues."

The researchers used atomic-level simulations to measure the forces between each atom. Image courtesy of Alek Aksimentiev, University of Illinois
The researchers used atomic-level simulations to measure the forces between each atom. Image courtesy of Alek Aksimentiev, University of Illinois
The researchers posit that the observed interactions between DNA molecules could play a role in how chromosomes are organized in the cell and which ones are expanded or folded up compactly, determining functions of different cell types or regulating the cell cycle.

"For example, once you methylate DNA, the chromosome becomes more compact. It prevents the cellular machinery from accessing the DNA," Aksimentiev said. "It's a way to tell which genes are turned on and which are turned off. This could be part of the bigger question of how chromosomes are arranged and how organizational mechanisms can affect gene expression."

"In the DNA alphabet, there is A, T, G and C. We found that when a sequence is rich in A and T, there is a stronger attraction," Aksimentiev said. "Then we looked at what actually causes it at the molecular level. We like to think of DNA as a nice symmetrical helix, but actually there's a line of bumps which are methyl groups, which we find are the key to regulating this sequence-dependent attraction."

One of the processes for regulating gene expression is methylation, which adds methyl groups to the DNA helix. In further simulations, the researchers found that the methyl groups strengthen the attraction, so sequences heavy in G and C with methyl groups attached will interact just as strongly as sequences rich in A and T.

"The key is the presence of charged particles in the solution," Aksimentiev said. "Let's say you have two people who don't like each other, but I like them both, so I can shake hands with both of them and bring them close. The counter-ions work exactly like that. The strength of how they pull the DNA molecules together depends on how many of them are between the molecules. When we have these bumps, we have a lot of counter-ions."

Ha and graduate researcher Hajin Kim experimentally verified the findings of the simulations. Using advanced single-molecule imaging techniques, they isolated two DNA molecules inside a tiny bubble, then watched to see how the molecules interacted. The experiments matched well with the data from the simulations, both for the sequence-dependent interactions and for interactions between methylated DNA.

"It was wonderful to see the computational predictions borne out exactly in our experiments," Ha said. "It tells us how accurate the atomic-level simulations are and shows that they can guide new research avenues."

The researchers posit that the observed interactions between DNA molecules could play a role in how chromosomes are organized in the cell and which ones are expanded or folded up compactly, determining functions of different cell types or regulating the cell cycle.

"For example, once you methylate DNA, the chromosome becomes more compact. It prevents the cellular machinery from accessing the DNA," Aksimentiev said. "It's a way to tell which genes are turned on and which are turned off. This could be part of the bigger question of how chromosomes are arranged and how organizational mechanisms can affect gene expression."

 

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.