DNA molecules directly interact with each other based on sequence

Liz Ahlberg, Illinois News Bureau
3/23/2016

Illinois postdoctoral researcher Jejoong Yoo, left, and professor Aleksei Aksimentiev found that molecules of DNA directly interact with each other based on their sequences. Photo by L. Brian Stauffer
Illinois postdoctoral researcher Jejoong Yoo, left, and professor Aleksei Aksimentiev found that molecules of DNA directly interact with each other based on their sequences. Photo by L. Brian Stauffer
Proteins play a large role in DNA regulation, but a new study finds that DNA molecules directly interact with one another in a way that's dependent on the sequence of the DNA and epigenetic factors. This could have implications for how DNA is organized in the cell and even how genes are regulated in different cell types, the researchers say.

Led by Aleksei Aksimentiev, a professor of physics at the University of Illinois, and Taekjip Ha, a professor of biophysics and biophysical chemistry at Johns Hopkins University and an adjunct at the University of Illinois Center for the Physics of Living Cells along with Aksimentiev, the researchers published their work in the journal Nature Communications.

"We are still only starting to explore the physical properties of DNA. It's not just a string of letters," Aksimentiev said. "It's a complex molecule with unique characteristics. The prevailing hypothesis is that everything that happens inside the nucleus, the way the DNA is organized, is all the work of proteins. What we show is that direct DNA-DNA interactions may play a role in large-scale chromosome organization as well."

Using the Blue Waters supercomputer at the National Center for Supercomputing Applications on the Illinois campus, Aksimentiev and postdoctoral researcher Jejoong Yoo performed detailed simulations of two DNA molecules interacting in a charged solution such as is found in the cell. The supercomputer allowed them to map each individual atom and its behavior, and to measure the forces between the molecules. They found that, though DNA molecules tend to repel each other in water, in a cell-like environment two DNA molecules can interact according to their respective sequences.

"In the DNA alphabet, there is A, T, G and C. We found that when a sequence is rich in A and T, there is a stronger attraction," Aksimentiev said. "Then we looked at what actually causes it at the molecular level. We like to think of DNA as a nice symmetrical helix, but actually there's a line of bumps which are methyl groups, which we find are the key to regulating this sequence-dependent attraction."

One of the processes for regulating gene expression is methylation, which adds methyl groups to the DNA helix. In further simulations, the researchers found that the methyl groups strengthen the attraction, so sequences heavy in G and C with methyl groups attached will interact just as strongly as sequences rich in A and T.

"The key is the presence of charged particles in the solution," Aksimentiev said. "Let's say you have two people who don't like each other, but I like them both, so I can shake hands with both of them and bring them close. The counter-ions work exactly like that. The strength of how they pull the DNA molecules together depends on how many of them are between the molecules. When we have these bumps, we have a lot of counter-ions."

Ha and graduate researcher Hajin Kim experimentally verified the findings of the simulations. Using advanced single-molecule imaging techniques, they isolated two DNA molecules inside a tiny bubble, then watched to see how the molecules interacted. The experiments matched well with the data from the simulations, both for the sequence-dependent interactions and for interactions between methylated DNA.

"It was wonderful to see the computational predictions borne out exactly in our experiments," Ha said. "It tells us how accurate the atomic-level simulations are and shows that they can guide new research avenues."

The researchers used atomic-level simulations to measure the forces between each atom. Image courtesy of Alek Aksimentiev, University of Illinois
The researchers used atomic-level simulations to measure the forces between each atom. Image courtesy of Alek Aksimentiev, University of Illinois
The researchers posit that the observed interactions between DNA molecules could play a role in how chromosomes are organized in the cell and which ones are expanded or folded up compactly, determining functions of different cell types or regulating the cell cycle.

"For example, once you methylate DNA, the chromosome becomes more compact. It prevents the cellular machinery from accessing the DNA," Aksimentiev said. "It's a way to tell which genes are turned on and which are turned off. This could be part of the bigger question of how chromosomes are arranged and how organizational mechanisms can affect gene expression."

"In the DNA alphabet, there is A, T, G and C. We found that when a sequence is rich in A and T, there is a stronger attraction," Aksimentiev said. "Then we looked at what actually causes it at the molecular level. We like to think of DNA as a nice symmetrical helix, but actually there's a line of bumps which are methyl groups, which we find are the key to regulating this sequence-dependent attraction."

One of the processes for regulating gene expression is methylation, which adds methyl groups to the DNA helix. In further simulations, the researchers found that the methyl groups strengthen the attraction, so sequences heavy in G and C with methyl groups attached will interact just as strongly as sequences rich in A and T.

"The key is the presence of charged particles in the solution," Aksimentiev said. "Let's say you have two people who don't like each other, but I like them both, so I can shake hands with both of them and bring them close. The counter-ions work exactly like that. The strength of how they pull the DNA molecules together depends on how many of them are between the molecules. When we have these bumps, we have a lot of counter-ions."

Ha and graduate researcher Hajin Kim experimentally verified the findings of the simulations. Using advanced single-molecule imaging techniques, they isolated two DNA molecules inside a tiny bubble, then watched to see how the molecules interacted. The experiments matched well with the data from the simulations, both for the sequence-dependent interactions and for interactions between methylated DNA.

"It was wonderful to see the computational predictions borne out exactly in our experiments," Ha said. "It tells us how accurate the atomic-level simulations are and shows that they can guide new research avenues."

The researchers posit that the observed interactions between DNA molecules could play a role in how chromosomes are organized in the cell and which ones are expanded or folded up compactly, determining functions of different cell types or regulating the cell cycle.

"For example, once you methylate DNA, the chromosome becomes more compact. It prevents the cellular machinery from accessing the DNA," Aksimentiev said. "It's a way to tell which genes are turned on and which are turned off. This could be part of the bigger question of how chromosomes are arranged and how organizational mechanisms can affect gene expression."

 

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.