Song group predicts key-protein binding pattern involved in brain disorders

Rick Kubetz, Engineering at Illinois
3/28/2016

Pictured left to right are U.C. Davis postdoctoral researcher Wooje Lee, University of Illinois postdoctoral researcher Tomas Rube, and U. of I. Professor  of Physics and Bioengineering Jun Song
Pictured left to right are U.C. Davis postdoctoral researcher Wooje Lee, University of Illinois postdoctoral researcher Tomas Rube, and U. of I. Professor of Physics and Bioengineering Jun Song
Researchers from the University of Illinois at Urbana-Champaign and the University of California-Davis (UC Davis) are combining in vivo experimentation with computation for highly accurate prediction of the genome-wide binding pattern of a key protein involved in brain disorders.

 “The MeCP2 gene is critical for proper brain development and expressed at near-histone levels in neurons, but the mechanism of its genomic localization remains poorly understood,” explained Jun Song, a professor of bioengineering and of physics at the University of Illinois at Urbana-Champaign. “Using high-resolution MeCP2 binding data, we show that DNA sequence features alone can predict binding with 88% accuracy.”

Even though every cell in a person’s body contains the same DNA sequence, it is possible to have hundreds of different cell types with distinct shapes and functions, because the access to genetic information encoded in DNA is regulated in a cell type-specific manner. One way of regulating the information access is through chemically modifying DNA with methylation, which is in turn recognized by various proteins that physically interact with other factors to control transcriptional activities.

According to Tomas Rube, a postdoctoral researcher in Song’s research group, MeCP2 is one of the proteins previously identified to bind methylated CG dinucleotides.

“Mutations in the MeCP2 gene are directly linked to a severe brain disorder known as the Rett Syndrome, but the genome-wide binding pattern and function of MeCP2 remain poorly understood,” said Rube, the lead author of the paper, “Sequence Features Accurately Predict Genome-wide MeCP2 Binding in vivo,” appearing in Nature Communications.

In neurons, MeCP2 is approximately as abundant as histone octamers in the nucleus and is believed to be broadly distributed throughout chromatin. This high abundance has posed a major technical challenge in mapping the genome-wide binding sites of MeCP2 and characterizing the precise DNA sequence features that help recruit MeCP2.

The researchers showed that MeCP2 densely covers the genome in a manner that can be accurately predicted using DNA sequence features alone and that local MeCP2 binding activities can help explain the pattern of gene expression in neurons.

 “These findings provide key insights into this important epigenetic regulator and highlight the complexity of understanding the relation between DNA sequence and gene regulation,” stated Wooje Lee, a co-first author and a postdoctoral fellow in the laboratory of Qizhi Gong, professor of cell biology and human anatomy at the UC Davis School of Medicine and co-senior author of this study. Dr. Gong’s laboratory and her colleagues at UC Davis did the experimental work, while Dr. Song’s group handled the complex computation and modeling. 

The research team, representing several universities in the U.S. and Korea, used new high-resolution MeCP2 ChIP-seq data from olfactory epithelium, to develop a predictive model of genome-wide MeCP2 binding pattern.  Although there is strong evidence in vitro supporting the ability of MeCP2 to bind methyl-CpG (mCpG), MeCP2 may actually bind diverse sequences in vivo, as reflected in its multifaceted roles. The functional impact of MeCP2 has been previously examined by attempting to identify MeCP2 target genes in neurons. In addition to a number of genes found to be suppressed by MeCP2, multiple studies have also identified a global reduction of transcription in neurons lacking functional MeCP2, suggesting a novel activating role of MeCP2. 

“Contrary to the common belief that MeCP2 can bind only methylated CG, our study shows that MeCP2 in fact has diverse modes of binding, largely attributable to the GC sequence content and often independent of the methylation status of DNA,” Song said, adding that the lack of a fine-resolution genome-wide binding map has been a major bottleneck in understanding the mechanism of MeCP2 function to this point. “This study shows that MeCP2 binds distinct but numerous sites throughout the genome in a manner that can be accurately predicted using DNA sequence features alone.”

Study was made possible by important contributions from other co-authors Miroslav Hejna (University of Illinois); Huaiyang Chen, Dag H. Yasui, John F. Hess, and Janine M. LaSalle (University of California-Davis School of Medicine).

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.