Illinois researchers part of the collaboration identifying a second gravitational wave event

Kristin Williamson, NCSA Assistant Director, Public Affairs
6/15/2016

Physics Illinois Professor Stu Shapiro is an expert in numerical relativity and pioneered some of the early work in this field. Background image courtesy of LIGO.
Physics Illinois Professor Stu Shapiro is an expert in numerical relativity and pioneered some of the early work in this field. Background image courtesy of LIGO.

In less than the blink of an eye Einstein’s theory of relativity is on its way to becoming just another science fact. Scientists observed gravitational waves—ripples in the fabric of spacetime for the second time—and researchers at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign were part of the Ligo collaboration identifying the event.

Scientists stunned the world in February 2016 with the announcement of the first detection of gravitational waves, a milestone in physics and astronomy that confirmed a major prediction of Albert Einstein’s 1915 general theory of relativity, and marked the beginning of the new field of gravitational-wave astronomy.  On December 26, 2015 a second event was observed. Both discoveries were made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed.

“Detecting gravitational waves will soon become a common occurrence,” said Ed Seidel, director of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, who is also Founder Professor of Physics and professor of astronomy. “NCSA is at the forefront of the most ambitious projects in multi-messenger astronomy that are already revolutionizing our understanding of the Universe. With NCSA now officially a member of the LIGO consortium, we expect to be having these types of announcements on a routine basis”

Gravitational waves carry information about their origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the most recently observed gravitational waves were produced during the final moments of the merger of two black holes—14 times and 8 times the mass of the sun—to produce a single, more massive spinning black hole that is 21 times the mass of the sun. The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington.

During the merger, which occurred approximately 1.4 billion years ago, a quantity of energy roughly equivalent to the mass of the sun was converted into gravitational waves. The detected signal comes from the last 27 orbits of the black holes before their merger. These colliding black holes were much less massive than those observed in the first detection, and because of their lighter mass stayed in the band of the detectors for a longer period – about one second. And, based on the arrival time of the signals—with the Livingston detector measuring the waves 1.1 milliseconds before the Hanford detector—the position of the source in the sky can be roughly determined.

Advanced LIGO’s next data-taking run will begin this fall. By then, further improvements in detector sensitivity are expected to allow LIGO to reach as much as 1.5 to 2 times more of the volume of the universe. The Virgo detector is expected to join in the latter half of the upcoming observing run.

“Gravitational wave astrophysics will enter a new phase during the second observing run” says Eliu Huerta, head of the relativity group at NCSA and leader of the 18-member NCSA LIGO team at Illinois. “Given the detection rate during the first observing run last year, we expect to experience a swift transition from the first detections phase to the astrophysics phase, when we will be able to make strong inferences about the distribution of masses and angular momenta of black holes and neutron stars, and possibly detect unexpected events. The work we are doing at NCSA on gravitational wave source modeling and data analysis will provide key insights.”

Stuart Shapiro, a professor of physics and astronomy at Illinois, says the first detection of gravitational waves “told us that binary black holes exist, that their formation is consistent with stellar population models, that they merge and generate gravitational waves in accord with general relativity, and that spinning black hole remnants settle into the unique Kerr stationary state predicted by general relativity. This second detection confirms and thereby strengthens all of these conclusions.”

The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. This recent discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors. It is just the second of many discoveries in which NCSA will play a role.

Gabrielle Allen, an expert in the development of techniques for high performance and grid computing, notes that NCSA is building upon its long tradition of interdisciplinary research. Allen is associate director for Computational Research and Education at NCSA and professor of astronomy at Illinois.

“NCSA is bringing together expertise from several departments at Illinois in all aspects of gravitational wave astrophysics and large scale electromagnetic surveys under the umbrella of advanced cyberinfrastructure,” she explains.

“I am very excited that the University of Illinois is now an official part of the LIGO Collaboration, and that these activities are involving interdisciplinary activities across multiple colleges and units with physics, astronomy, and NCSA,” says Peter Schiffer, vice chancellor for research at the University of Illinois at Urbana-Champaign.

“The future of multi-messenger astronomy is looking bright here,” says Allen.                       

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use this data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.