Chiang elected Academician of the Academia Sinica

Siv Schwink

Emeritus and Research Professor of Physics Tai-Chang Chiang, University of Illinois at Urbana-Champaign
Emeritus and Research Professor of Physics Tai-Chang Chiang, University of Illinois at Urbana-Champaign
Emeritus and Research Professor Tai-Chang Chiang of the University of Illinois at Urbana-Champaign has been elected by the Academia Sinica to its 2016 class of Academicians. He is among 22 scholars across all academic disciplines to receive this high honor this year. Academia Sinica is the national academy of Taiwan. Former Academicians in the mathematics and physics division include Nobel laureates T.D. Lee, C.N. Yang, Sam Ting, and Daniel Tsui.

Over the course of his career, Chiang has made lasting contributions to condensed matter physics, surface science, and synchrotron radiation research, including several truly groundbreaking findings. He has authored about 300 journal articles, and his work has been cited more than 8,500 times.

Chiang’s work on precision electron spectroscopy and structural determination has led to important advances in the physics of electrons, lattice structures, and phonons and their mutual interactions in solids, at surfaces, in films, and at the nanoscale.

His landmark research on thin films and quantum well spectroscopy has received international recognition. Specifically, Chiang showed that quantum well states could be observed in films as thick as tens of atomic layers, debunking the notion that only semiconductor substrates could support quantum well states.

Another important breakthrough for Chiang was the making of atomically uniform films for thicknesses over a hundred atomic layers. This work again received international attention. Chiang went on to elucidate the properties of the surface, bulk, quantum well, multilayer, and superlattice electronic states. The accumulated work is a tour-de-force demonstration of quantum-state control through nanoscale engineering of film structures.

Chiang has since broadened his work to include ultrathin films of 3D topological materials, with a focus on the topological properties in the thin film (2D) limit.

Chiang is the recipient of numerous recognitions, including the 2015 Davisson-Germer Prize in Atomic or Surface Physics, sponsored by the American Physical Society (APS). He received the Xerox Award for Faculty Research (1985), the NSF Presidential Young Investigator Award (1984-89), and the IBM Faculty Development Award (1984-5). He is a Fellow of the APS.

Chiang’s professional service is likewise noteworthy. He served as head of the Solid State Sciences and Materials Chemistry Program from 1991 to 2006. He was associate director of the Frederick Seitz Materials Research Laboratory from 1999 to 2006. From 2003 to 2008, he chaired the Board of Governors for UNICAT at the Advanced Photon Source, Argonne National Laboratory. From 2010 to 2014, he served as the scientific director of the University of Wisconsin-Madison Synchrotron Radiation Center. He was appointed Chair Professor at the National Chiao-Tung University (2013-16); Honorary Chair at National Tsing Hua University (2008-11); and Distinguished Chair at National Taiwan University (2007-10 and 2015-present). He is currently a visiting professor at Tokyo University.

Chiang received a bachelor’s degree in physics from the National Taiwan University in 1971 and a doctoral degree in physics from the University of California, Berkeley in 1978. He held a postdoctoral appointment at the IBM T.J. Watson Research Center in Yorktown Heights from 1978 to 1980, before he joined the faculty at Physics Illinois in 1980.

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.