Illinois physicist to lead $8 million NASA-funded study

Siv Schwink and Nicholas Vasi

Research team assembled to uncover universal aspects of the evolution of life in deep time

Urbana — An interdisciplinary team from the University of Illinois at Urbana-Champaign is among five new research groups selected to join the NASA Astrobiology Institute (NAI) to study the origin and evolution of life. The NAI invitation comes with a five-year research grant totaling about $8 million.
Nigel Goldenfeld, Swanlund Professor of Physics and leader of the Biocomplexity research theme at the Institute for Genomic Biology (IGB), will serve as the principal investigator.
“We want to help answer not only the basic questions of ‘How does life begin and evolve?’ and ‘Is there life beyond Earth?’ but also ‘Why does life exist at all?’” said Goldenfeld. “We are really excited to be a part of NAI. It’s a unique group, and NASA is the leading scientific organization trying to address these questions."
The team’s goal will be to characterize the fundamental principles governing the origin and evolution of life anywhere in the universe. The multidisciplinary effort to define and characterize “universal biology” will include leading-edge scientists from the fields of microbiology, geobiology, computational chemistry, genomics, and physics.
The Illinois team will use genomics to explore deep evolutionary time through computer simulations and laboratory investigations, looking for signatures of early collective states of life that would have preceded the rise of individual organisms on earth.
Goldenfeld said, “With modern genomics, we now have the data and the tools to examine carefully the evolutionary relationships between parts of the cell. And even more than that, theory gives us a clear hypothesis to test: namely that early life was communal, and indeed had to have been, based on general universal biology considerations related to the detailed structure of the genetic code.” 
In this aspect, the work will build on the suggestions made in the 1970’s by 2003 Crafoord Prize winner and co-investigator Carl Woese about the nature of early life, and followed up three decades later in a study by Kalin Vetsigian, Carl Woese and Nigel Goldenfeld. In their paper, “Communal evolution of the genetic code" (Proc. Natl. Acad. Sci. 103, 10696-10701, 2006.) the researchers used artificial life simulations to show that the uniqueness and robustness of our genetic code could only have evolved if earliest life—from which our first genomic ancestor sprung three billion years ago—existed as a collective.
“In this collective, genetic material would have been exchanged horizontally across generations, rather than just vertically from parent to offspring. Picture microbial organisms that would have sucked each other up and spit each other out. With this, the speed of evolution goes up.” said Goldenfeld.
In a complementary study, the group plans to perform laboratory work to investigate how individual cells sense, respond and adapt to changing environments.
“We say that evolution is a random process—but it’s not completely clear that this is true,” said Goldenfeld. “We will look at cells under stress to quantify how they adapt. Could stress trigger mutation, or does it just select for it? This has never been properly tested to everyone’s satisfaction, and could be a significant factor in understanding the limits to where life can exist.”
Additionally, the team will look for signatures of the major transitions that life must make as evolution changes from communal to individual organismal lineages.  Co-investigators on the research team include Elbert Branscomb, Isaac Cann, Lee DeVille, Bruce Fouke, Rod Mackie, Gary Olsen, Zan Luthey-Schulten, Charles Werth, Rachel Whitaker, and Carl Woese from Illinois, Scott Dawson from the University of California, Davis, and Philip Hastings and Susan Rosenberg from Baylor College of Medicine, Houston.
The research will be based in the university’s Institute for Genomic Biology. IGB Director Gene Robinson said, “This bold research program fits perfectly at the IGB, which was established to help faculty compete for the large grants that are necessary to address grand challenges with a team-based multidisciplinary approach. The NASA award reflects the creativity and vision of the faculty in the Biocomplexity research theme, the IGB, and the campus as a whole.”
In addition to the research, novel educational activities related to the field of astrobiology will take place. These will include not only formal education in astrobiology at the undergraduate level, but also a massively online open course as part of the university’s initiative in this arena. Other public outreach will include a partnership with a science program at the middle school science level, the development of short web-based videos on astrobiology concepts and findings called “AstroFlix”, and a new astrobiology course for lifelong learners in the community.
Goldenfeld said this project is potentially of great interest to astrobiology: “It is important to develop the field of universal biology, because we may never find traces of life on other planets. But if we understand that life is generic, maybe even an expected outcome of the laws of physics, then we’ll know for sure that we are not alone.” 

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.