World's most powerful digital camera records first images in hunt for dark energy

Siv Schwink and Tricia Barker
9/17/2012

Illinois contributes camera components, data intensive computing, and scientific analyses

Champaign—Eight billion years ago, rays of light from distant galaxies began their long journey to Earth.  Now that ancient starlight found its way to a mountaintop in Chile, where the newly-constructed Dark Energy Camera, the most powerful sky-mapping machine ever created, captured and recorded it for the first time.
 
That light may hold the answer to one of the biggest mysteries in physics–why the expansion of the universe is speeding up.
 
The 570-megapixel camera, roughly the size of a phone booth, is the product of eight years of planning and construction by scientists, engineers, and technicians on three continents. Much of the camera’s data acquisition electronics and control software were built in Urbana by a team of Illinois particle physicists led by Professor Jon Thaler.
 
With this device, scientists in the international Dark Energy Survey (DES) collaboration will undertake the largest galaxy survey ever attempted and will use that data—to be stored and processed at Illinois’ National Center for Supercomputing Applications (NCSA)—to carry out four probes of dark energy: studying galaxy clusters, supernovas, the large-scale clumping of galaxies, and weak gravitational lensing. This is the first time all four methods will be possible in a single experiment.
 
Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration.
Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, in the Fornax cluster of galaxies, which lies about 60 million light years from Earth. Credit: Dark Energy Survey Collaboration.
“The combined analyses of the scientists in the DES collaboration are expected to contribute significantly to our understanding of the properties of dark energy and dark matter,” said Thaler. “The Illinois physics team will look at supernovas to chart the expansion of the universe over time, and at gravitational lensing to determine the history of the formation of structure (galaxies and galaxy clusters).
 
“Gravitational lensing is similar to optical lensing: just like glass, gravity also bends light. Light from distant stars and galaxies bends on its way to Earth as it is pulled by the gravity of objects that it passes—this bending distorts the shapes of distant galaxies. Normal matter and dark matter both have this effect, so measuring this distortion tells us how the dark matter contributes to galactic structure,” he said.
 
Over five years, the survey will create detailed color images of one-eighth of the sky, or 5,000 square degrees, to discover and measure 300 million galaxies, 100,000 galaxy clusters, and 4,000 supernovas.  
 
“Hidden within the galaxy cluster distribution are clues to the nature of the universe we live in,” said Dr. Robert Gruendl of the Illinois Astronomy Department.
 
Gruendl, together with Don Petravick of NCSA and other collaborators have developed and will operate a data management framework for processing, calibrating, and archiving the massive amounts of data—petabytes over the lifetime of the survey—that will be collected for the DES. This system relies on the iForge cluster and a 100-terabyte Oracle database at NCSA and also uses high-performance computing resources provided by the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) project.
 
Full Dark Energy Camera image of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. The center of the cluster is the clump of galaxies in the upper portion of the image. The prominent galaxy in the lower right of the image is the barred spiral galaxy NGC 1365. Credit: Dark Energy Survey Collaboration.
Full Dark Energy Camera image of the Fornax cluster of galaxies, which lies about 60 million light years from Earth. The center of the cluster is the clump of galaxies in the upper portion of the image. The prominent galaxy in the lower right of the image is the barred spiral galaxy NGC 1365. Credit: Dark Energy Survey Collaboration.
"NCSA provides the networking, computing, and archiving capabilities and sophisticated tools that this type of data-intensive science requires,” said NCSA’s Don Petravick, who leads the data management project. "This allows astronomers and physicists to focus on analysis of science-ready data, rather than spending their time on preliminary processing or technical issues."
 
The Dark Energy Survey is expected to begin in December, after the camera is fully tested, and will take advantage of the excellent atmospheric conditions in the Chilean Andes to deliver pictures with the sharpest resolution seen in a wide-field astronomy survey.
 
The DES is supported by funding from the U.S. Department of Energy; the National Science Foundation; funding agencies in the United Kingdom, Spain, Brazil, Germany, and Switzerland; and the participating DES institutions.

 

Recent News

  • Events

Scientists at the University of Illinois at Urbana-Champaign working in dark matter research have gotten together and planned a celebration of Dark Matter Day (October 31), just a few days early. A free screening of the visually stunning documentary, Seeing the Beginning of Time, will take place at the National Center for Supercomputing Applications (NCSA) on October 24, 2017, at 7 p.m., followed by a Q&A session with a panel of experts. This event is open to all, though seating is limited.

Seeing the Beginning of Time is a 50-minute visually stunning journey through deep space and time, co-produced by the NCSA, and Thomas Lucas Productions. The trailer is viewable on YouTube at https://www.youtube.com/watch?time_continue=3&v=5P0vfe5dC5A.

The American Chemical Society (ACS), through its Division of History of Chemistry, has an award that acknowledges these greatest of strides: the Chemical Breakthrough Awards are presented annually in recognition of “seminal chemistry publications, books, and patents that have been revolutionary in concept, broad in scope, and long-term in impact.” These awards are made to the department where the breakthrough occurred, not to the individual scientists or inventors.

This year, the ACS honored the discovery of “J-coupling” (also known as spin-spin coupling) in liquids, a breakthrough that enabled scientists to use Nuclear Magnetic Resonance (NMR) spectroscopy to identify atoms that are joined by a chemical bond and so to determine the structure of molecules.

  • Looking back
  • Astrophysics
  • Astrophysics/Cosmology
  • Astronomy
  • Numerical Relativity

Today’s historic joint announcement by the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Europe-based Virgo detector of the first detection of gravitational waves produced by colliding neutron stars is doubly noteworthy. It’s also the first cosmic event observed in both gravitational waves and light—some 70 ground- and space-based observatories observed the colliding neutron stars. This is arguably the biggest moment to date in “multi-messenger astronomy.”

In a press release issued by LIGO and Virgo collaborations, National Science Foundation Director France A. Córdova comments, “It is tremendously exciting to experience a rare event that transforms our understanding of the workings of the universe. This discovery realizes a long-standing goal many of us have had, that is, to simultaneously observe rare cosmic events using both traditional as well as gravitational-wave observatories. Only through NSF’s four-decade investment in gravitational-wave observatories, coupled with telescopes that observe from radio to gamma-ray wavelengths, are we able to expand our opportunities to detect new cosmic phenomena and piece together a fresh narrative of the physics of stars in their death throes.”

Well before the development of today’s innovative technologies supporting this simultaneous gravitational-wave and optical observation, early research in numerical relativity at the University of Illinois at Urbana-Champaign helped to lay the theoretical foundation for it. In fact, many features of the discovery had been predicted in the early computational simulations of Professor of Physics and Astronomy Stuart Shapiro and his group.

  • Research
  • Astrophysics
  • Astrophysics/Cosmology

A team of scientists using the Dark Energy Camera (DECam), the primary observing tool of the Dark Energy Survey (DES), was among the first to observe the fiery aftermath of a recently detected burst of gravitational waves, recording images of the first confirmed explosion from two colliding neutron stars ever seen by astronomers.

Scientists on the DES joined forces with a team of astronomers based at the Harvard-Smithsonian Center for Astrophysics (CfA) for this effort, working with observatories around the world to bolster the original data from DECam. Images taken with DECam captured the flaring-up and fading over time of a kilonova – an explosion similar to a supernova, but on a smaller scale – that occurs when collapsed stars (called neutron stars) crash into each other, creating heavy radioactive elements.

Two scientists at the University of Illinois at Urbana-Champaign are members of the DES collaboration, Professors Joaquin Vieira of the Departments of Astronomy and of Physics and Felipe Menanteau of the Department