Benjamin McCall elected APS Fellow

Siv Schwink
11/14/2012

Associate Professor Benjamin McCall has been elected a Fellow of the American Physical Society “for integrative studies of the simplest polyatomic molecule (H3+), including its dissociative recombination, proton-swapping reaction with H2, and astronomical observations and modeling; and for the development of high-sensitivity, high-precision methods for molecular ion spectroscopy."

McCall has built an exciting research program in the emerging field of astrochemistry. His team’s work probes the network of chemical reactions responsible for the formation of most molecules in the universe and so has profound implications for our understanding of the origins of the universe and life.
 
McCall’s research group has developed new highly sensitive techniques in high-resolution laser spectroscopy to study astronomically important molecular ions in the gas phase. This laboratory work generates spectroscopic “fingerprints” of the highly reactive (and therefore short-lived) ions at low temperatures.
 
McCall and his team are then able to use powerful ground-based and space-based telescopes to search for these spectra to determine the concentration of these molecular ions in the interstellar medium and in interstellar clouds, where low densities and ultracold temperatures slow the unfolding of chemical reactions. Finally, McCall and his team interpret the concentrations using models based on chemical kinetics to characterize the chemical and physical conditions in the interstellar clouds.
 
The McCall research group’s studies of the chemical reaction of H3+ with H2 (which interchanges identical protons subject to the conservation of nuclear spin angular momentum) and the recombination of H3+ with electrons (a key process in interstellar chemistry) has shed new light on the composition of interstellar environments.
 
Department Head and Professor of Physics Dale Van Harlingen said, “Ben is an exceptional scholar whose pioneering work is truly interdisciplinary—at the intersection of chemistry, astronomy, and physics. We are happy to have him as an affiliate in the Department of Physics—the research by his group in observational molecular astronomy, the chemistry of fundamental reactive ion species, and laboratory detection of molecules of astronomical importance couples well to our growing interest in the emerging fields of astrobiology and astrochemistry."
 
McCall earned a bachelor of science in chemistry from the California Institute of Technology in 1995 and a joint Ph.D. in chemistry and astronomy & astrophysics from the University of Chicago in 2001. He then worked as a postdoctoral fellow at the University of California at Berkeley before joining the University of Illinois faculty as an assistant professor in 2004. He holds appointments in the Departments of Chemistry, Astronomy, and Physics.
 
McCall is the recipient of many honors. Among these, he was named University Scholar (2011), received the Sloan Research Fellowship from the Alfred P. Sloan Foundation (2009), the Coblentz Award from the Coblentz Society (2009), the Cottrell Scholar Award from the Research Corporation (2007), the David and Lucile Packard Fellowship (2006), the Presidential Early Career Award for Scientists and Engineers (2005), and a National Science Foundation CAREER award (2005).
 
Election to fellowship in the American Physical Society is limited to no more than one-half of one percent of the Society's membership and is conferred following a rigorous, peer-reviewed selection process.  Fellows are recognized internationally for their outstanding contributions to physics.
 
See McCall’s extensive list of publications here.

 

Recent News

  • Accolades

Professor and Associate Head for Undergraduate Programs Brian DeMarco has been named a University Scholar by the Office of the Vice President for Academic Affairs at the University of Illinois at Urbana-Champaign. The award recognizes faculty who have made significant contributions in their fields of research and teaching, in line with the university’s reputation for leading-edge innovation and excellence. DeMarco is among 12 faculty members in the University of Illinois System to be selected for this honor in 2018.

  • Research
  • High Energy Physics

Today, the National Science Foundation (NSF) announced its launch of the Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP). The $25 million software-focused institute will tackle the unprecedented torrent of data that will come from the high-luminosity running of the Large Hadron Collider (LHC), the world’s most powerful particle accelerator located at CERN near Geneva, Switzerland. The High-Luminosity LHC (HL-LHC) will provide scientists with a unique window into the subatomic world to search for new phenomena and to study the properties of the Higgs boson in great detail. The 2012 discovery at the LHC of the Higgs boson—a particle central to our fundamental theory of nature—led to the Nobel Prize in physics a year later and has provided scientists with a new tool for further discovery.

The HL-LHC will begin operations around 2026, continuing into the 2030s. It will produce more than 1 billion particle collisions every second, from which only a tiny fraction will reveal new science, because the phenomena that physicists want to study have a very low probability per collision of occurring. The HL-LHC’s tenfold increase in luminosity—a measure of the number of particle collisions occurring in a given amount of time—will enable physicists to study familiar processes at an unprecedented level of detail and observe rare new phenomena present in nature.

  • Research
  • Biological Physics

Scientists at the University of Illinois at Urbana-Champaign have produced the most precise picture to date of population dynamics in fluctuating feast-or-famine conditions. Professor Seppe Kuehn, a biological physicist, and his graduate student Jason Merritt found that bacterial population density is a function of both the frequency and the amplitude of nutrient fluctuations. They found that the more frequent the feast cycles and the longer a feast cycle, the more rapid the population recovery from a famine state. This result has important implications for understanding how microbial populations cope with the constant nutrient fluctuations they experience in nature.

  • In the Media
  • High Energy Physics

Six years after discovering the Higgs boson, physicists have observed how the particle decays — a monumental contribution to scientists' understanding of the Standard Model of particle physics and the universe at large, study researchers said.

Excitement swirled in the physics community when, in 2012, physicists discovered the Higgs boson, an elementary particle predicted by the Standard Model that relates to how objects have mass. But this discovery didn't mark the end of Higgs boson exploration. In addition to predicting the existence of Higgs boson particles, the Standard Model posits that 60 percent of the time, a Higgs boson particle will decay into fundamental particles called bottom quarks (b quarks).