Under Construction: Distant Galaxy Churning Out Stars at Remarkable Rate

Megan Watzke, Chandra X-ray Center, Cambridge, Mass.
12/14/2016

SPT0346-52, a galaxy found about a billion years after the Big Bang, has one of the highest rates of star formation ever seen in a galaxy. Astronomers discovered this stellar construction boom by combining data from Chandra and several other telescopes.   Image credit: X-ray: NASA/CXC/Univ of Florida/J.Ma et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech; Radio: ESO/NAOJ/NRAO/ALMA; Simulation: Simons Fdn./Moore Fdn./Flatiron Inst./Caltech/C. Hayward & P. Hopkins
SPT0346-52, a galaxy found about a billion years after the Big Bang, has one of the highest rates of star formation ever seen in a galaxy. Astronomers discovered this stellar construction boom by combining data from Chandra and several other telescopes. Image credit: X-ray: NASA/CXC/Univ of Florida/J.Ma et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech; Radio: ESO/NAOJ/NRAO/ALMA; Simulation: Simons Fdn./Moore Fdn./Flatiron Inst./Caltech/C. Hayward & P. Hopkins
Astronomers have used NASA's Chandra X-ray Observatory and other telescopes to show that a recently-discovered galaxy is undergoing an extraordinary boom of stellar construction. The galaxy is 12.7 billion light years from Earth, seen at a critical stage in the evolution of galaxies about a billion years after the Big Bang.

After astronomers discovered the galaxy, known as SPT 0346-52, with the National Science Foundation's South Pole Telescope (SPT), they observed it with several space and other ground-based telescopes. Data from the international Atacama Large Millimeter/submillimeter Array (ALMA) previously revealed extremely bright infrared emission, suggesting that the galaxy is undergoing a tremendous burst of star birth.

However, an alternative explanation remained: Was much of the infrared emission instead caused by a rapidly growing supermassive black hole at the galaxy's center? Gas falling towards the black hole would become much hotter and brighter, causing surrounding dust and gas to glow in infrared light. To explore this possibility, researchers used NASA’s Chandra X-ray Observatory and CSIRO’s Australia Telescope Compact Array, a radio telescope.

No X-rays or radio waves were detected, so astronomers were able to rule out a black hole being responsible for most of the bright infrared light.

"We now know that this galaxy doesn't have a gorging black hole, but instead is shining brightly with the light from newborn stars," said Jingzhe Ma of the University of Florida in Gainesville, Florida, who led the new study. "This gives us information about how galaxies and the stars within them evolve during some of the earliest times in the Universe."

Stars are forming at a rate of about 4,500 times the mass of the Sun every year in SPT0346-52, one of the highest rates seen in a galaxy. This is in contrast to a galaxy like the Milky Way that only forms about one solar mass of new stars per year.

"Astronomers call galaxies with lots of star formation 'starburst' galaxies," said co-author Anthony Gonzalez, also of the University of Florida. "That term doesn’t seem to do this galaxy justice, so we are calling it a 'hyper-starburst' galaxy."

The high rate of star formation implies that a large reservoir of cool gas in the galaxy is being converted into stars with unusually high efficiency.

Astronomers hope that by studying more galaxies like SPT0346-52 they will learn more about the formation and growth of massive galaxies and the supermassive black holes at their centers.

"For decades, astronomers have known that supermassive black holes and the stars in their host galaxies grow together," said co-author Joaquin Vieira of the University of Illinois at Urbana-Champaign. "Exactly why they do this is still a mystery. SPT0346-52 is interesting because we have observed an incredible burst of stars forming, and yet found no evidence for a growing supermassive black hole. We would really like to study this galaxy in greater detail and understand what triggered the star formation and how that affects the growth of the black hole."

SPT0346-52 is part of a population of strong gravitationally-lensed galaxies discovered with the SPT. SPT0346-52 appears about six times brighter than it would without gravitational lensing, which enables astronomers to see more details than would otherwise be possible.

A paper describing these results appears in a recent issue of The Astrophysical Journal and is available online. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.