Quantum simulation technique yields topological soliton state in Su-Schrieffer-Heeger model

Siv Schwink
12/23/2016

Assistant Professor of Physics Bryce Gadway poses with graduate students Eric Meier (left) and Fangzhao Alex An (center) in his lab, in Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign. Photo credit: L. Brian Stauffer, University of Illinois at Urbana-Champaign
Assistant Professor of Physics Bryce Gadway poses with graduate students Eric Meier (left) and Fangzhao Alex An (center) in his lab, in Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign. Photo credit: L. Brian Stauffer, University of Illinois at Urbana-Champaign
Topological insulators, an exciting, relatively new class of materials, are capable of carrying electricity along the edge of the surface, while the bulk of the material acts as an electrical insulator. Practical applications for these materials are still mostly a matter of theory, as scientists probe their microscopic properties to better understand the fundamental physics that govern their peculiar behavior.

Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state (the topological soliton state) of the topological insulator trans-polyacetylene. The transport properties of this organic polymer are typical of topological insulators and of the Su-Schrieffer-Heeger (SSH) model.

Physics graduate students Eric Meier and Fangzhao Alex An, working with Professor Bryce Gadway, developed a new experimental method, an engineered approach that allows the team to probe quantum transport phenomena.

“Quantum simulation allows for some unique capabilities as compared to direct studies of electron transport in real materials,” explains Gadway. “A chief advantage of using neutral atoms is the ability to manipulate them at will through the use of laser light and other electromagnetic fields. By changing the details of these control fields, we can, for example, add tailored disorder to study localization phenomena or break symmetries of the system in a controlled way, like through the introduction of a large effective magnetic field. The ultimate goal is to use such a well-controlled system in the regime where particles interact strongly, and explore new phenomena whose emergence we would not have been able to predict based on the behavior of single atoms.”

The team’s new method takes this idea of system design, or “Hamiltonian engineering,” to the extreme, allowing the researchers to control every single element that governs the transport of single particles.

“This particular study was important because we showed for the first time that we can use this method to realize topologically nontrivial systems, and there’s strong promise for the future realization of interacting, topological systems of atoms.” Meier comments. “Ours is the first study of this kind to allow site-resolved detection of the topological boundary states and the probing of their structure in a phase-sensitive way.”

The SSH model is the textbook model of a topological insulator, displaying most of the salient features associated with topological systems—a topological phase with protected boundary states and an insulating system bulk. In conjugated polymers like polyacetylene, the topological soliton state is associated with the dimerized structure of alternating single and double bonds along the molecule’s backbone chain. Protected electronic states show up at the boundary between regions with opposite alternating order, and give rise to some unique transport properties, including an increase in electrical conductivity by about nine orders of magnitude under light doping with impurities.

An explains, “Some of the most interesting aspects of topological systems are rather subtle or rely on fine-tuning of the system parameters. Engineered quantum systems—cold atoms, photonic simulators, superconducting qubits, etc.—are better equipped for the exploration of these types of phenomena. The reason for this is that they’re generally free from the intrinsic disorder, both material disorder and thermal fluctuations, that would be hard to avoid in a conventional condensed matter system.”

These results are published in the December 23, 2016 issue of Nature Communications.

The team’s new technique holds promise for further investigations into the fundamental behavior of topological systems. Additional experiments are already underway, extending this work to two-dimensional quantum Hall–type systems and the exploration of topological insulators in the presence of disorder.

“The interesting aspect of our study is that we were able to observe directly the topological boundary states of this system and probe them in a phase-sensitive way with atomic physics techniques,” Gadway sums up. “Future experiments, similar in vein but in a slightly different experimental system, could allow for the exploration of strongly correlated transport phenomena inaccessible by classical simulation. The biggest goal of our group in the near future is observing the influence of atomic interactions in such a system. In particular, the fact that our atoms form an interacting quantum fluid allows them to naturally support local interactions in the engineered model system. We’re hoping to probe the influence of these interactions very soon.”

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.