Nadya Mason Selected for 2018-19 Defense Science Study Group

Caitlin Shea McCoy for Frederick Seitz Materials Research Laboratory

Nadya Mason poses with some of her graduate students in her laboratory in the Frederick Seitz Materials Research Lab. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Nadya Mason poses with some of her graduate students in her laboratory in the Frederick Seitz Materials Research Lab. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Physics Professor Nadya Mason has been selected for the 2018-19 Defense Science Study Group (DSSG). The DSSG is a program of education and study that introduces outstanding science and engineering professors to United States’ security challenges and encourages the scholars to apply their talents to these issues.

“It’s a great honor to have been selected for the 2018 DSSG class,” Mason shares. “I’m excited about the unique opportunity to learn more about our nation’s security issues and the technical challenges that face us… and the geek in me also looks forward to seeing some cool airplanes, ships and submarines!”

Started in 1986, this program is directed by the non-profit Institute for Defense Analyses (IDA) and sponsored by the Defense Advanced Research Projects Agency (DARPA). According to the DSSG site, this program is an investment in the future. Although there are almost 200 alumni, this is a highly selective program, with only 18 people selected from across the country every two years.

“This is a rather significant honor,” Professor and Director of the Materials Research Lab Paul Braun comments. “We are very happy for Professor Mason and excited to see what she is able to do with this group.”

Each group meets approximately 20 days per year for those two years. During these sessions, members focus on defense policy, related research and development, and the systems, missions, and operations of the armed forces and the intelligence community.

“Illinois has had excellent representation among DSSG classes from the beginning, so it’s an additional pleasure to be continuing the Illinois tradition,” Mason adds.


Recent News

  • Looking back
  • Astrophysics
  • Astrophysics/Cosmology
  • Astronomy
  • Numerical Relativity

Today’s historic joint announcement by the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Europe-based Virgo detector of the first detection of gravitational waves produced by colliding neutron stars is doubly noteworthy. It’s also the first cosmic event observed in both gravitational waves and light—some 70 ground- and space-based observatories observed the colliding neutron stars. This is arguably the biggest moment to date in “multi-messenger astronomy.”

In a press release issued by LIGO and Virgo collaborations, National Science Foundation Director France A. Córdova comments, “It is tremendously exciting to experience a rare event that transforms our understanding of the workings of the universe. This discovery realizes a long-standing goal many of us have had, that is, to simultaneously observe rare cosmic events using both traditional as well as gravitational-wave observatories. Only through NSF’s four-decade investment in gravitational-wave observatories, coupled with telescopes that observe from radio to gamma-ray wavelengths, are we able to expand our opportunities to detect new cosmic phenomena and piece together a fresh narrative of the physics of stars in their death throes.”

Well before the development of today’s innovative technologies supporting this simultaneous gravitational-wave and optical observation, early research in numerical relativity at the University of Illinois at Urbana-Champaign helped to lay the theoretical foundation for it. In fact, many features of the discovery had been predicted in the early computational simulations of Professor of Physics and Astronomy Stuart Shapiro and his group.

  • Research
  • Astrophysics
  • Astrophysics/Cosmology

A team of scientists using the Dark Energy Camera (DECam), the primary observing tool of the Dark Energy Survey (DES), was among the first to observe the fiery aftermath of a recently detected burst of gravitational waves, recording images of the first confirmed explosion from two colliding neutron stars ever seen by astronomers.

Scientists on the DES joined forces with a team of astronomers based at the Harvard-Smithsonian Center for Astrophysics (CfA) for this effort, working with observatories around the world to bolster the original data from DECam. Images taken with DECam captured the flaring-up and fading over time of a kilonova – an explosion similar to a supernova, but on a smaller scale – that occurs when collapsed stars (called neutron stars) crash into each other, creating heavy radioactive elements.

Two scientists at the University of Illinois at Urbana-Champaign are members of the DES collaboration, Professors Joaquin Vieira of the Departments of Astronomy and of Physics and Felipe Menanteau of the Department

  • New Research Center
  • Condensed Matter Physics
  • Materials Research

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.