Jessie Shelton selected for PECASE

Siv Schwink
8/2/2019

Illinois Physics Professor Julia 'Jessie' Shelton
Illinois Physics Professor Julia 'Jessie' Shelton
Physics Professor Julia “Jessie” Shelton of the University of Illinois at Urbana-Champaign has been awarded the 2013 Presidential Early Career Award for Scientists and Engineers (PECASE), the highest honor bestowed by the US government on scientists and engineers in the early stages of their independent research careers.

Shelton is a theorist whose work spans a broad range of topics in particle physics beyond the Standard Model. She is especially interested in elucidating the nature of dark matter and in searching for unusual footprints of new physics at the Large Hadron Collider (LHC) at CERN in Switzerland. Her recent work focuses on possible decays of the Higgs boson to new particles, strategies to detect particles produced at the LHC that travel macroscopic distances before decaying, and the cosmological origin stories of "hidden sector" dark matter, i.e., dark matter that interacts far more strongly with other dark particles than it does with us.

At Illinois Physics, Shelton is known as an engaging teacher whose ability to explain complex physics concepts in elegant and concise language is coupled with great enthusiasm for public outreach efforts.

Shelton is a 2019 Center for Advanced Study Fellow at Illinois. She received an Early Career Award of the US Department of Energy in 2017. Since 2014, she has served as the theory convener for the Large Hadron Collider Higgs Cross-Section Working Group.

Shelton received a bachelor’s degree in physics from Princeton in 2000 and a doctoral degree in physics from Massachusetts Institute of Technology in 2006. Shelton held postdoctoral fellowships at Rutgers University (2006-2009), Yale University (2009-2012), and Harvard University (2012-2013) prior to joining the faculty at Illinois Physics in 2014.

Shelton is among six researchers at Illinois to be named PECASE recipients this year. Other winners include Chemistry Professor Prashant Jain, who is an affiliate faculty member in physics; Mechanical Science and Engineering Professors Gaurav Bahl and Kelly Stephani; Materials Science and Engineering Professor Pinshane Huang; and Molecular and Integrative Physiology Professor Daniel Llano.

The PECASE awards, established by former-President Clinton in 1996, are coordinated by the Office of Science and Technology Policy within the Executive Office of the President of the United States. PECASE awardees are selected for their pursuit of innovative research at the frontiers of science and technology and for their commitment to community service as demonstrated through scientific leadership, public education, or community outreach.

Recent News

  • Research
  • Condensed Matter Physics
  • Condensed Matter Experiment
  • Condensed Matter Theory

One of the greatest mysteries in condensed matter physics is the exact relationship between charge order and superconductivity in cuprate superconductors. In superconductors, electrons move freely through the material—there is zero resistance when it’s cooled below its critical temperature. However, the cuprates simultaneously exhibit superconductivity and charge order in patterns of alternating stripes. This is paradoxical in that charge order describes areas of confined electrons. How can superconductivity and charge order coexist?  

Now researchers at the University of Illinois at Urbana-Champaign, collaborating with scientists at the SLAC National Accelerator Laboratory, have shed new light on how these disparate states can exist adjacent to one another. Illinois Physics post-doctoral researcher Matteo Mitrano, Professor Peter Abbamonte, and their team applied a new x-ray scattering technique, time-resolved resonant soft x-ray scattering, taking advantage of the state-of-the-art equipment at SLAC. This method enabled the scientists to probe the striped charge order phase with an unprecedented energy resolution. This is the first time this has been done at an energy scale relevant to superconductivity.

  • Alumni News
  • In the Media

Will Hubin was one of those kids whose wallpaper and bed sheets were covered in airplanes and who loved building model airplanes. By the time he took his first flight in the late 1940s, he was hooked.

Now, he shares his passion for planes with children by taking them for their first flight, at no charge, in his four-seat 2008 Diamond DA-40 aircraft through the local Experimental Aircraft Association’s Young Eagles program.

“It’s a lot of fun and pretty rewarding. Anyone who loves flying likes to introduce others to it. It’s true of anything, any hobbyist. Some will talk constantly but they’re ecstatic,” said Hubin, a retired Kent State University physics professor.

Hubin learned to fly in 1962 when he was earning a doctorate in physics at the University of Illinois and has been flying ever since, adding commercial, instrument, instructor, multi-engine and seaplane ratings.

  • Research
  • Theoretical Biological Physics
  • Biological Physics
  • Biophysics

While watching the production of porous membranes used for DNA sorting and sequencing, University of Illinois researchers wondered how tiny steplike defects formed during fabrication could be used to improve molecule transport. They found that the defects – formed by overlapping layers of membrane – make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

Their findings are published in the journal Nature Nanotechnology.

Nanopore membranes have generated interest in biomedical research because they help researchers investigate individual molecules – atom by atom – by pulling them through pores for physical and chemical characterization. This technology could ultimately lead to devices that can quickly sequence DNA, RNA or proteins for personalized medicine.

  • In Memoriam

We are saddened to report that John Robert Schrieffer, Nobel laureate and alumnus of the Department of Physics at the University of Illinois at Urbana-Champaign, passed away on July 27, 2019, in Tallahassee, Florida. He was 88 years old.

Schrieffer was the “S” in the famous BCS theory of superconductivity, one of the towering achievements of 20th century theoretical physics, which he co-developed with his Ph.D advisor Professor John Bardeen and postdoctoral colleague Dr. Leon N. Cooper. At the time that Schrieffer began working with Bardeen and Cooper, superconductivity was regarded as one of the major challenges in physics. Since the discovery of the hallmark feature of superconductivity in 1911—the zero resistance apparently experienced by a current in a metal at temperatures near absolute zero—a long list of famous theoretical physicists had attempted to understand the phenomenon, including Albert Einstein, Niels Bohr, Richard Feynman, Lev Landau, Felix Bloch, Werner Heisenberg and John Bardeen himself (who was awarded the Nobel Prize for his co-invention of the transistor at around the time that Schrieffer began working with him in 1956).