Bradlyn one of two Illinois faculty members named Sloan Research Fellows

Lois Yoksoulian for the Illinois News Bureau

Recent News

  • Accolades
  • Condensed Matter Physics

Two University of Illinois at Urbana-Champaign scientists are among 126 recipients of the 2020 Sloan Research Fellowships from the Alfred P. Sloan Foundation. This honor is one of the most competitive and prestigious awards available to early career researchers. 

This year’s Illinois recipients are physics professor Barry Bradlyn and electrical and computer engineering professor Zhizhen Zhao.

  • Accolades
  • Biological Physics

University of Illinois at Urbana-Champaign Physics Professor Paul Selvin has been awarded the 2020 Gregorio Weber Award for Excellence in Fluorescence Theory and Applications of the Biological Fluorescence Subgroup of the Biophysical Society. The award is endowed by the ISS (Instrumenzione Scientificia Sperimentale). ISS, located in Champaign, IL, designs and manufactures highly sensitive fluorescence and biomedical instrumentation for research, clinical, and industrial applications.

Named for Illinois Biochemistry Professor Gregorio Weber, a pioneer in the development of both the theory and the application of fluorescence techniques in biology and biochemistry, this award recognizes distinguished individuals who have made original and significant contributions to the field of fluorescence.

Selvin has developed ground-breaking fluorescence instrumentation and techniques at the intersection of physics and biochemistry, shedding new light on the properties and behaviors of biomolecules in living cells. Early in his career, he devised the lanthanide resonance energy transfer (LRET) technique to investigate the chemical properties and structural dynamics of DNA systems. The LRET technique, which offered a 100-fold improvement in signal-to-background resolution over conventional techniques, is now widely used by the pharmaceutical industry for drug discovery.

  • Research
  • Condensed Matter Physics

An international team of scientists has discovered an exotic new form of topological state in a large class of 3D semi-metallic crystals called Dirac semimetals. The researchers developed extensive mathematical machinery to bridge the gap between theoretical models with forms of “higher-order” topology (topology that manifests only at the boundary of a boundary) and the physical behavior of electrons in real materials.