Cherned up to the maximum: international team demonstrates maximal Chern number in a real material

Paul Scherrer Institute
7/9/2020

In topological materials, electrons can display behaviour that is fundamentally different from that in ‘conventional’ matter, and the magnitude of many such "exotic" phenomena is directly proportional to an entity known as the Chern number. New experiments establish for the first time that the theoretically predicted maximum Chern number can be reached—and controlled—in a real material.

When the Royal Swedish Academy of Sciences awarded the Nobel Prize in Physics 2016 to David Thouless, Duncan Haldane and Michael Kosterlitz, they lauded the trio for having “opened the door on an unknown world where matter can assume strange states.” Far from being an oddity, the discoveries of topological phase transitions and topological phases of matter, to which the three theoreticians have contributed so crucially, has grown into one of the most active fields of research in condensed matter physics today. Topological materials hold  promise, for instance, for the development of novel types of electronic components and superconductors, and they harbour deep connections across areas of physics and mathematics. While new phenomena are discovered routinely, there are fundamental aspects yet to be settled.

One of those unsettled aspects is just how "strong" topological phenomena can be in a real material. Addressing that question, an international team of researchers led by Paul Scherrer Institute postdoctoral researcher Niels Schröter now provide an important benchmark. Writing in Science, the team reports experiments in which they observed that, in the topological semimetal palladium gallium (PdGa), one of the most common classifiers of topological phenomena, the Chern number, can reach the maximum value that is allowed in any metallic crystal. That this is possible in a real material has never been shown before. Moreover, the team has established ways to control the sign of the Chern number, which might bring new opportunities for exploring, and exploiting, topological phenomena.

Illinois Physics Professor Barry Bradlyn contributed to the theoretical work elucidating these experiments.

Developed to the maximum

In theoretical works it had been predicted that in topological semimetals the Chern number cannot exceed a magnitude of four. As candidate systems displaying phenomena with such maximal Chern numbers, chiral crystals were proposed. These are materials whose lattice structures have a well-defined handedness, in the sense that they cannot transform into their mirror image by any combination of rotations and translations. Several candidate structures have been studied. A conclusive experimental observation of a Chern number of plus or minus four, however, remained elusive.

credit: Niels Schröter <em>et al.</em>, Paul Scherrer Institute
credit: Niels Schröter et al., Paul Scherrer Institute
Previous efforts have been hindered by two factors in particular. First, a prerequisite for realizing a maximal Chern number is the presence of spin-orbit coupling, and at least in some of the materials studied so far, that coupling is relatively low, making it difficult to resolve the splittings of interest. Second, preparing clean and flat surfaces of relevant crystals has been highly challenging, and as a consequence spectroscopic signatures tended to be washed out.

Schröter et al. have overcome both of these limitations by working with PdGa crystals. The material displays strong spin-orbit coupling, and well-established methods exist for producing immaculate surfaces. In addition, at the Advanced Resonant Spectroscopies (ADRESS) beamline of the Swiss Light Source at PSI, the team had unique capabilities at their disposal for high-resolution ARPES experiments and thus could resolve the predicted tell-tale spectroscopic patterns. In combination with further measurements at the Diamond Light Source (UK) and with dedicated ab initio calculations, these data revealed hard and fast signatures in the electronic structure of PdGa that left no doubt that the maximal Chern number has been realized.

A hand on the Chern number

The team went one step further, beyond the observation of a maximal Chern number. They showed that the chiral nature of the PdGa crystals offers a possibility to control the sign of that number as well. To demonstrate such control, the researchers grew samples that were either left- or right-handed. When they looked then at the electronic structures of the two enantiomers, they found that the chirality of the crystals is reflected in the chirality of the electronic wave function. Taken together, this means that in chiral semimetals, the handedness, which can be determined during crystal growth, can be used to control topological phenomena emerging from the behaviour of the electrons in the material.

This sort of control opens a trove of new experiments. For example, novel effects can be expected to arise at the interface between different enantiomers, one with Chern number +4 and the other one with -4. And there are real prospects for applications, too. Chiral topological semimetals can host fascinating phenomena such as quantized photocurrents. Intriguingly, PdGa is known for its catalytic properties, inviting the question about the role of topological phenomena in such processes.

Finally, the findings now obtained for PdGa emerge from electronic band properties that are shared by many other chiral compounds—meaning that the corner of the “unknown world where matter can assume strange states” into which Schröter and colleagues have now ventured is likely to have a lot more to offer.

This work was carried out in close collaboration with the group of Claudia Felser at the Max Planck Institute for Chemical Physics of Solids in Dresden (Germany), and with colleagues at the Swiss Federal Laboratories for Materials Science and Technology (EMPA), the  École Polytechnique Fédérale de Lausanne (EPFL), the Donostia International Physics Center in Donostia-San Sebastian and  IKERBASQUE Bilbao (Spain), the University of Oxford (UK), Diamond Light Source (UK), and the University of Illinois at Urbana-Champaign (US).

Recent News

  • Research Funding

The United States Department of Energy awards $2.2 million to the FAIR Framework for Physics-Inspired Artificial Intelligence in High Energy Physics project, spearheaded by the National Center for Supercomputing Applications’ Center for Artificial Intelligence Innovation (CAII) and the University of Illinois at Urbana-Champaign. The primary focus of this project is to advance our understanding of the relationship between data and artificial intelligence (AI) models by exploring relationships among them through the development of FAIR (Findable, Accessible, Interoperable, and Reusable) frameworks. Using High Energy Physics (HEP) as the science driver, this project will develop a FAIR framework to advance our understanding of AI, provide new insights to apply AI techniques, and provide an environment where novel approaches to AI can be explored.

This project is an interdisciplinary, multi-department, and multi-institutional effort led by Eliu Huerta, principal investigator, director of the CAII, senior research scientist at NCSA, and faculty in Physics, Astronomy, Computational Science and Engineering and the Illinois Center for Advanced Studies of the Universe at UIUC. Alongside Huerta are co-PIs from Illinois: Zhizhen Zhao, assistant professor of Electrical & Computer Engineering and Coordinated Science Laboratory; Mark Neubauer, professor of physics, member of Illinois Center for Advanced Studies of the Universe, and faculty affiliate in ECE, NCSA, and the CAII; Volodymyr Kindratenko, co-director of the CAII, senior research scientist at NCSA, and faculty at ECE and Computer Science; Daniel S. Katz, assistant director of Scientific Software and Applications at NCSA, faculty in ECE, CS, and School of Information Sciences. In addition, the team is joined by co-PIs Roger Rusack, professor of physics at the University of Minnesota; Philip Harris, assistant professor of physics at MIT; and Javier Duarte, assistant professor in physics at UC San Diego.

  • Research

This year, 31 research teams have been awarded a combined 5.87 million node hours on the Summit supercomputer, the OLCF’s 200 petaflop IBM AC922 system. The research performed through the ALCC program this year will range from the impact of jets on offshore wind farms to the structure and states of quantum materials to the behavior of plasma within fusion reactors—all computationally intensive scientific applications necessitating the power of a large-scale supercomputer like Summit.

  • In Memoriam

Jim was widely viewed as one of the best teachers in the Physics Department. He was frequently listed in the University’s roster of excellent instructors and won awards for his classroom skills. In 2012, he received the Arnold T. Nordsieck Physics Award for Teaching Excellence for his “patient, insightful, and inspiring physics teaching, one problem at a time, that encourages undergraduate students to take their understanding to a new level.”

  • Research

Now a team of theoretical physicists at the Institute for Condensed Matter Theory (ICMT) in the Department of Physics at the University of Illinois at Urbana-Champaign, led by Illinois Physics Professor Philip Phillips, has for the first time exactly solved a representative model of the cuprate problem, the 1992 Hatsugai-Kohmoto (HK) model of a doped Mott insulator.