First Atom-by-Atom Simulation of a Life Form


The computing horsepower of one of the world’s most powerful supercomputers has been harnessed by Swanlund Professor of Physics Klaus Schulten and his research group to visualize the behavior of a complete life form, the satellite tobacco mosaic virus. "This is just a first glimpse of a moving virus,” Schulten said, “but it looks gorgeous.”

According to the researchers, their simulation is the first to capture an entire biological organism in atom-by-atom detail. The simulation was done at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign.

A better understanding of viral structures and mechanisms is an essential step in allowing scientists to develop improved methods of combatting viral infections in plants, animals, and eventually, humans.

Schulten’s group, which includes Peter Freddolino, a graduate student in biophysics and computational biology, and Anton Arkhipov, a graduate student in physics, collaborated with crystallographers at the University of California, Irvine—Alexander McPherson, a professor of molecular biology and biochemistry, and research specialist Steven Larson. The group’s results were published in the March issue of Structure (P.L. Freddolino, et al., Structure 14, 1767–1777 [2006]).

The researchers visualized the dynamic atomic structure of the virus in a saline solution by calculating, in femtosecond time steps, how each of its »1 million atoms moved.

The simulation utilized the latest version of NAMD, a software program developed by Schulten and his colleagues over the last decade to model the molecular dynamics of biological molecules. The program allowed the supercomputer’s five hundred processors to work in parallel on the same problem. Even so, the simulation took about 50 days to generate 50 ns of virus activity.

“Such a task would take a desktop computer around 35 years," according to Schulten.

“The simulations followed the life of the satellite tobacco mosaic virus, but only for a very brief time,” added Freddolino and Arkhipov. “Nevertheless, they allowed us to discover key physical properties of the viral particle, as well as providing crucial information on its assembly.”

In the brief simulation, the virus looks spherical but expands and contracts asymmetrically, as if it were “breathing.” The model also shows that the virus coat collapses without its genetic material, suggesting that when reproducing, the virus builds its coat around the genetic material, rather than inserting it into a pre-existing coat as was commonly assumed. “We saw something that is truly revolutionary,” Schulten said.

Ultimately, computational biophysicists will generate longer simulations of larger biological macromolecules, but that development will wait on the next generation of supercomputers, the so-called “petascale high-performance computing systems.”

“It may take still a long time to simulate a dog wagging its tail with a computer,” said Schulten. “But a big first step has been taken to ‘test fly’ living organisms. Naturally, this step will assist modern medicine as we continue to learn more about how viruses live.”

This work was supported by the National Institutes of Health and by allotments of computing time from the National Center for Supercomputing Applications through its National Science Foundation funding. The conclusions presented are those of the authors and not necessarily those of the funding agencies.

Recent News

  • In the Media

A second solar farm planned in Savoy will put the University of Illinois in the lead among American universities in terms of solar energy, a top campus proponent says.

The campus is moving ahead with a 55-acre solar farm along the north side of Curtis Road, between First and Neil streets in Savoy, about a mile south of the first 21-acre farm on Windsor Road.

Physics Professor Scott Willenbrock, who recently served as a provost's fellow for sustainability, briefed the Academic Senate about the project Monday, saying it will help the campus meet its goal of generating 5 percent of its energy needs from renewable sources. That target was part of the Illinois Climate Action Plan, known as iCap.

  • Research
  • Biological Physics

A previously unappreciated interaction in the genome turns out to have possibly been one of the driving forces in the emergence of advanced life, billions of years ago.

This discovery began with a curiosity for retrotransposons, known as “jumping genes,” which are DNA sequences that copy and paste themselves within the genome, multiplying rapidly. Nearly half of the human genome is made up of retrotransposons, but bacteria hardly have them at all.

Nigel Goldenfeld, Swanlund Endowed Chair of Physics and leader of the Biocomplexity research theme at the IGB, and Thomas Kuhlman, a former physics professor at Illinois who is now at University of California, Riverside, wondered why this is.“We thought a really simple thing to try was to just take one (retrotransposon) out of my genome and put it into the bacteria just to see what would happen,” Kuhlman said. “And it turned out to be really quite interesting.”

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.