News

  • Looking back
  • Astrophysics
  • Astrophysics/Cosmology
  • Astronomy
  • Numerical Relativity

The historic October 16 joint announcement by the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Europe-based Virgo detector of the first detection of gravitational waves produced by colliding neutron stars is doubly noteworthy. It’s also the first cosmic event observed in both gravitational waves and light—some 70 ground- and space-based observatories observed the colliding neutron stars. This is arguably the biggest moment to date in “multi-messenger astronomy.”

In a press release issued by LIGO and Virgo collaborations, National Science Foundation Director France A. Córdova comments, “It is tremendously exciting to experience a rare event that transforms our understanding of the workings of the universe. This discovery realizes a long-standing goal many of us have had, that is, to simultaneously observe rare cosmic events using both traditional as well as gravitational-wave observatories. Only through NSF’s four-decade investment in gravitational-wave observatories, coupled with telescopes that observe from radio to gamma-ray wavelengths, are we able to expand our opportunities to detect new cosmic phenomena and piece together a fresh narrative of the physics of stars in their death throes.”

Well before the development of today’s innovative technologies supporting this simultaneous gravitational-wave and optical observation, early research in numerical relativity at the University of Illinois at Urbana-Champaign helped to lay the theoretical foundation for it. In fact, many features of the discovery had been predicted in the early computational simulations of Professor of Physics and Astronomy Stuart Shapiro and his group.

  • Research
  • Astrophysics
  • Astrophysics/Cosmology

A team of scientists using the Dark Energy Camera (DECam), the primary observing tool of the Dark Energy Survey (DES), was among the first to observe the fiery aftermath of a recently detected burst of gravitational waves, recording images of the first confirmed explosion from two colliding neutron stars ever seen by astronomers.

Scientists on the DES joined forces with a team of astronomers based at the Harvard-Smithsonian Center for Astrophysics (CfA) for this effort, working with observatories around the world to bolster the original data from DECam. Images taken with DECam captured the flaring-up and fading over time of a kilonova – an explosion similar to a supernova, but on a smaller scale – that occurs when collapsed stars (called neutron stars) crash into each other, creating heavy radioactive elements.

Two scientists at the University of Illinois at Urbana-Champaign are members of the DES collaboration, Professors Joaquin Vieira of the Departments of Astronomy and of Physics and Felipe Menanteau of the Department

  • Research
  • Astrophysics/Cosmology
  • Astrophysics

One of the principal strategies to indirectly detect dark matter is to search for the photons produced when it annihilates. Such searches look for gamma rays or x rays in regions of the sky where dark matter is known to be abundant. Professors Jessie Shelton, Stuart Shapiro, and Brian Fields at the University of Illinois at Urbana–Champaign have proposed to look inside dark matter spikes induced by the gravitational pull of supermassive black holes. Such measurements could test so called p-wave dark matter models.

  • Q&A
  • Astrophysics/Cosmology
  • Astrophysics
  • Cosmology
  • Relativity

The theory of general relativity is Einstein's theory of relativistic gravitation. It describes gravity as arising from the warping of space and time, or spacetime, caused by the presence of mass and energy. Mass curves spacetime, much like a stationary bowling ball curves a trampoline, and curved spacetime accelerates matter, much like a marble accelerates when placed on the warped trampoline.

  • Accolades
  • Astrophysics/Cosmology
  • Astrophysics
  • Cosmology

Professor Charles Gammie has been named a 2015 Simons Fellow in Theoretical Physics by the Simons Foundation.

Gammie, who has joint appointments in astronomy and physics at the University of Illinois at Urbana-Champaign, will use the fellowship to continue his leading-edge theoretical work in black hole astrophysics, while on sabbatical next academic year at the University of Oxford in the United Kingdom. While abroad, Gammie will also enjoy an appointment as a visiting fellow at All Souls College in Oxford, for the fall (Michaelmas) term.

  • Research
  • Astrophysics/Cosmology
  • Astrophysics
  • Cosmology

Scientists on two continents have independently discovered a set of celestial objects that seem to belong to the rare category of dwarf satellite galaxies orbiting our home galaxy, the Milky Way.

Dwarf galaxies are the smallest known galaxies, and they could hold the key to understanding dark matter, and the process by which larger galaxies form.

A team of researchers with the Dark Energy Survey, headquartered at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, and an independent group from the University of Cambridge  jointly announced their findings today. Both teams used data taken during the first year of the Dark Energy Survey, all of which is publicly available, to carry out their analysis.